
Results from the Biomonitoring component of the San Joaquin Valley Pollution and Health Environmental Research Study (BiomSPHERE)

Biomonitoring California Scientific Guidance Panel Meeting August 27th, 2025

Aalekhya Reddam
Biomonitoring California
Safer Alternatives Assessment and Biomonitoring Section, OEHHA

Air Pollution in the San Joaquin Valley

The San Joaquin Valley has four AB617 communities

Biomonitoring CA Studies in the San Joaquin Valley

Stockton Air Pollution Exposure Project (SAPEP)

Farmworker women & Respiratory
Exposure to Smoke from Swamp
Cooler Air (FRESSCA-Mujeres)

Biomonitoring component of the **S**an Joaquin Valley **P**ollution and **H**ealth **E**nvironmental **Re**search Study (BiomSPHERE)

Study Goals

San Joaquin Valley Pollution and Health Environmental Research (SPHERE) Study*

Air pollutants and noise exposure in Fresno and Stockton

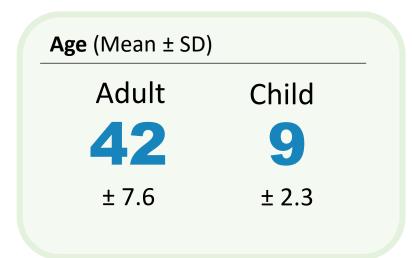
BiomSPHERE added a biomonitoring component to SPHERE

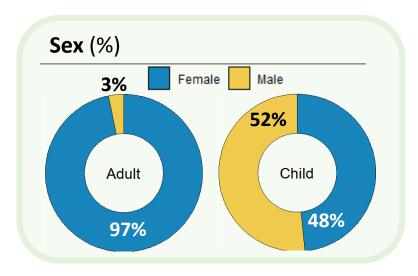
- Air pollution exposures in Stockton and Fresno using biomonitoring
- Differences in exposures between individuals, within individuals over time, and across the two communities
- Provide comparative data to our other studies in the San Joaquin Valley

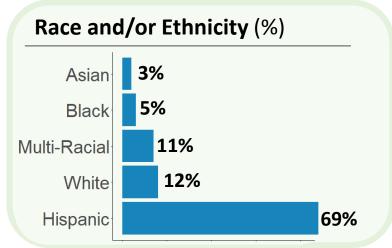
BiomSPHERE Participants

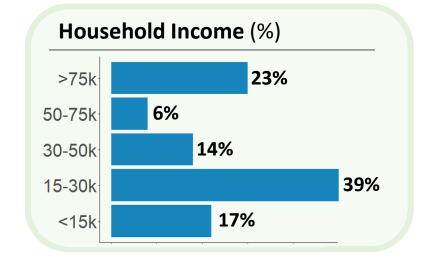
64 families

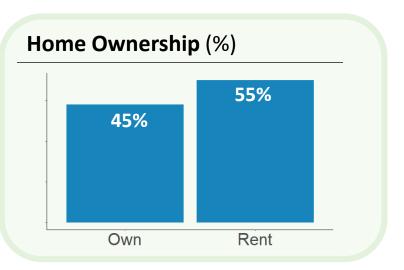
Spanish and English speakers

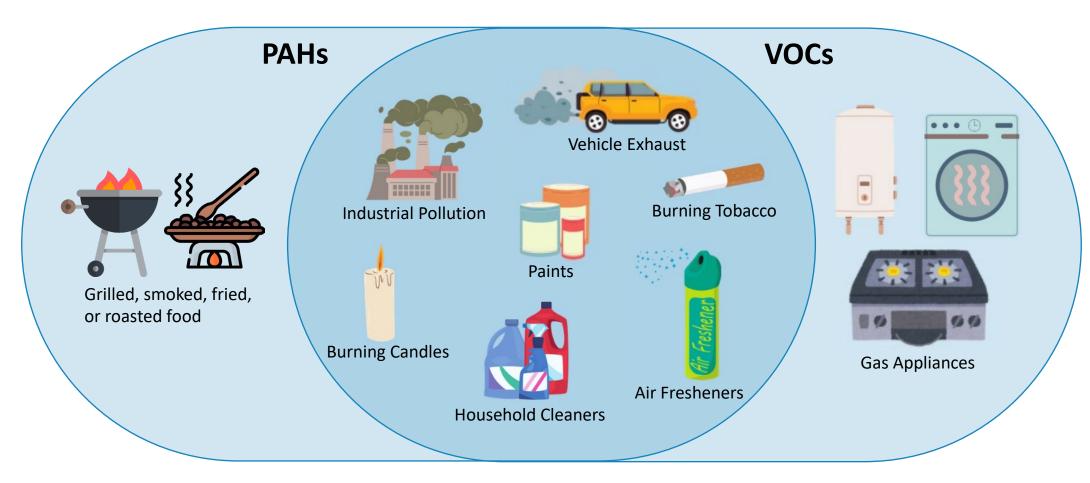



Households in Stockton (N = 12) and Fresno (N = 52)




February to November of 2023


Demographics (N = 64 families)



Air Pollutants

Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) are known to be major components of indoor and outdoor air pollution

Air Monitoring

- Air monitoring conducted for 24 hours.
 Matched indoor and one outdoor sample collected from each home
- Air measurements:
 - 36 PAHs
 - Criteria air pollutants (PM_{2.5}, ozone, nitrogen dioxide, carbon monoxide)
 - Black carbon
 - VOCs
- Four PAHs overlapped with urinary analytes
 - Naphthalene (NAP)
 - Fluorene (FLU)
 - Phenanthrene (PHE)
 - Pyrene (PYR)

Biomonitoring 5

First morning void urine sample

 For a subset of 8 families, daily samples were collected over four consecutive days

- Urinary analytes:
 - Metabolites of PAHs and VOCs
 - Biomarkers of oxidative stress and inflammation
 - Cotinine

Data Analysis

Air Monitoring

• Values below limit of detection (LOD) were imputed: LOD/ $\sqrt{2}$

- Indoor-to-outdoor (I/O) PAH ratio was calculated when at least one of the indoor or outdoor PAH measurements in each household was > LOD
- Univariate linear models used to examine associations with biomarkers

Biomonitoring in Urine

- Values below LOD were imputed: LOD/ $\sqrt{2}$
- Creatinine adjusted values for comparison with NHANES concentrations
- Specific gravity (SG) adjusted and log transformed values for statistical analysis
- Urine sample **closest** in time to the questionnaire was selected for associations
- Linear models used to examine associations with questionnaire data

PAH Results

PAHs in Air

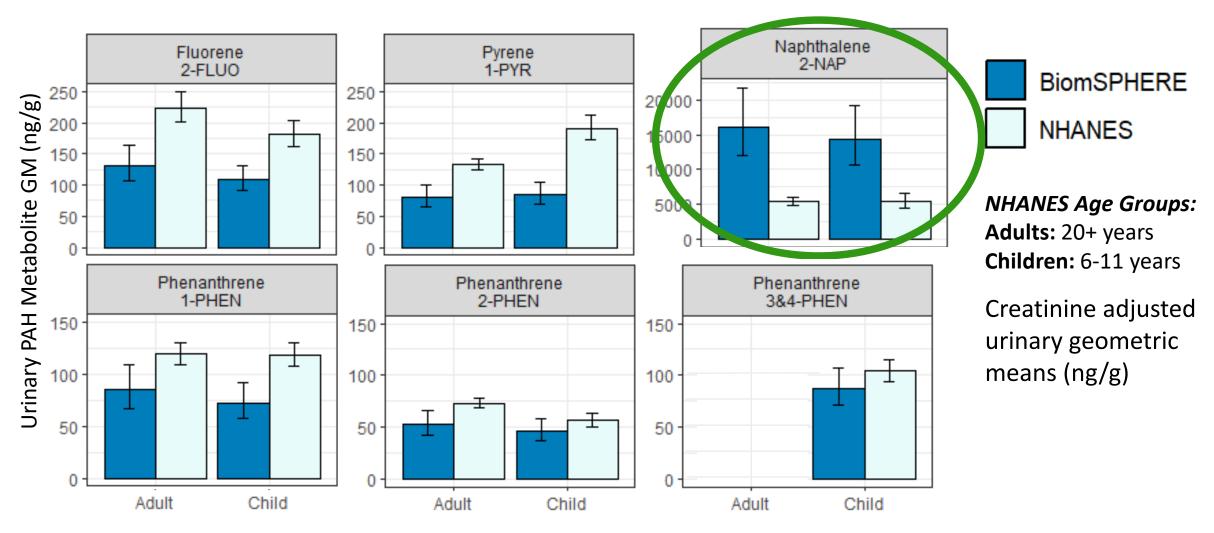
		NAP	FLU	PHE	PYR
Indoor	N	59	57	57	32
	Detection Freq	56%	5%	18%	16%
Outdoor	N	51	51	51	30
	Detection Freq	35%	10%	20%	20%

 Naphthalene is the most frequently detected PAH; this is consistent with other studies

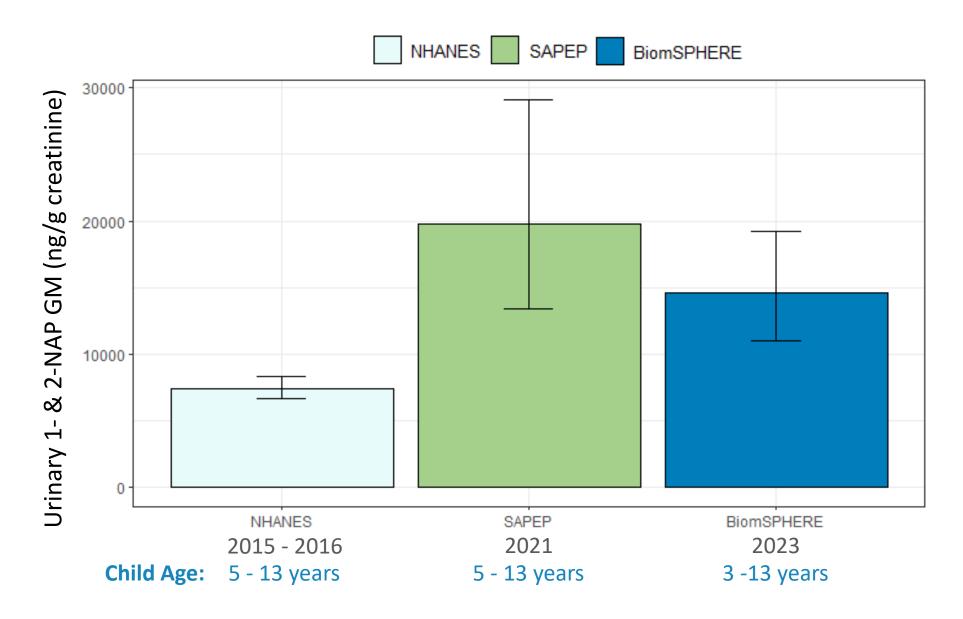
		NAP	FLU	PHE	PYR
Indoor/Outdoor	N (Indoor/Outdoor Pair)	27	6	11	7
Ratio	Ratio	2.6	0.78	1.1	1.4

The average indoor-to-outdoor ratio (I/O) was highest for naphthalene

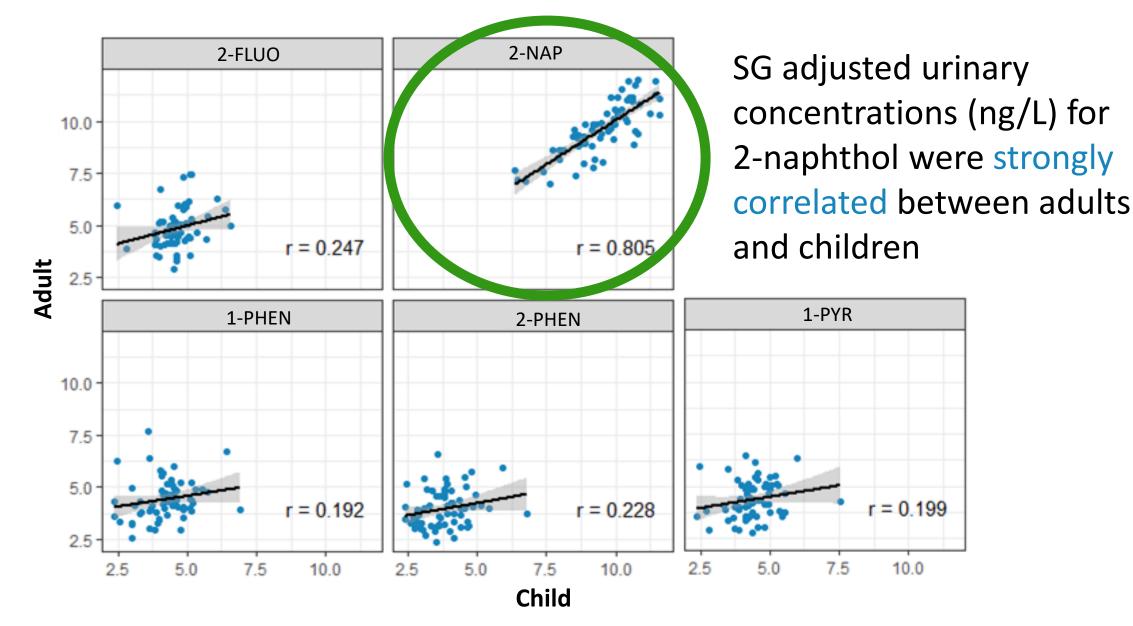
PAH Metabolites in Urine


		Adult (N = 64)		Child (N = 64)	
Parent Compound	Metabolite*	Detection Frequency (%)	Median (ng/g)	Detection Frequency (%)	Median (ng/g)
	1-FLUO	52	33	47	31
Fluorene	2-FLUO	94	132	92	118
	3-FLUO	45	NC	48	NC
Nanhthalana	1-NAP	53	361	44	NC
Naphthalene	2-NAP	100	14900	100	14500
	1-PHEN	91	85.6	86	75.3
Phenanthrene	2-PHEN	69	53.3	69	43.8
	3- & 4-PHEN	56	80.8	72	80.9
Pyrene	1-PYR	88	82.3	88	79.8

NC: Not calculated due to low detection frequency


Medians include data that were imputed and adjusted for creatinine

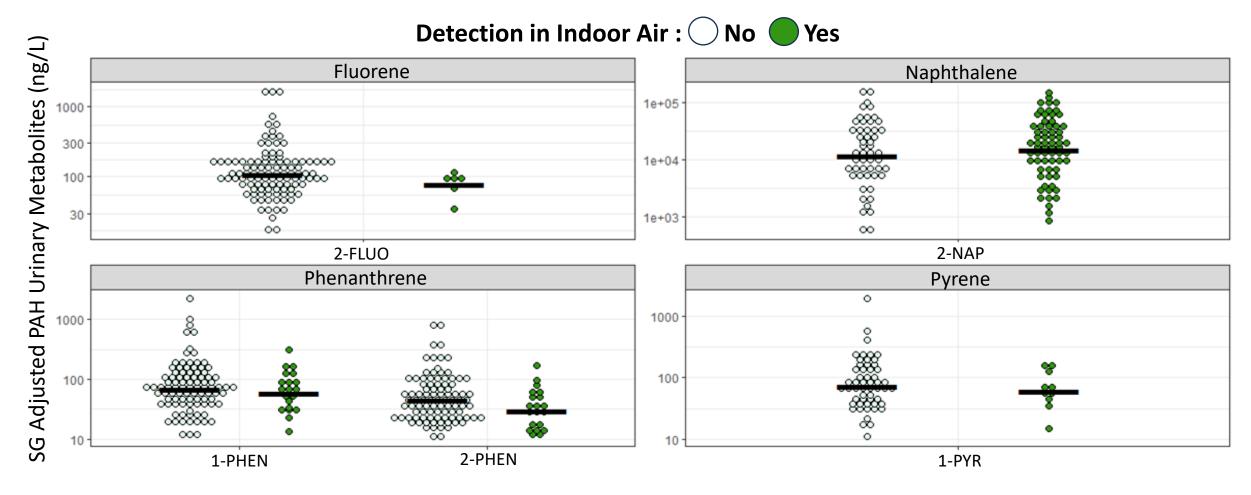
^{*}Full chemical names are provided in the glossary included at the end of this presentation


PAHs in BiomSPHERE vs NHANES

1- & 2-NAP in Children Across Studies

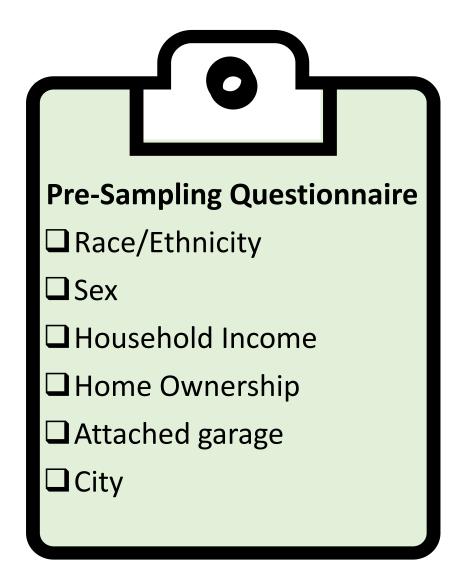
PAH metabolites in Adults vs Children

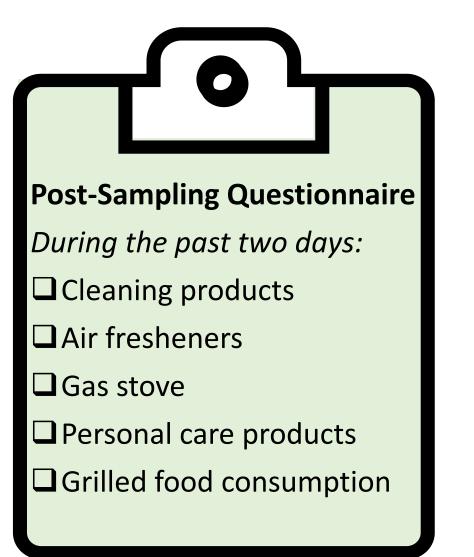
Temporal Variability in PAH Metabolite Levels

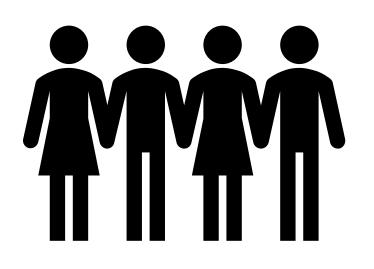

	2-FLUO	2-NAP	1-PYR	1-PHEN
Adult	0.84	0.94	0.79	0.07
Child	~0.00	0.88	0.40	0.25

Intraclass correlation coefficients for SG adjusted urinary concentrations (ng/L)

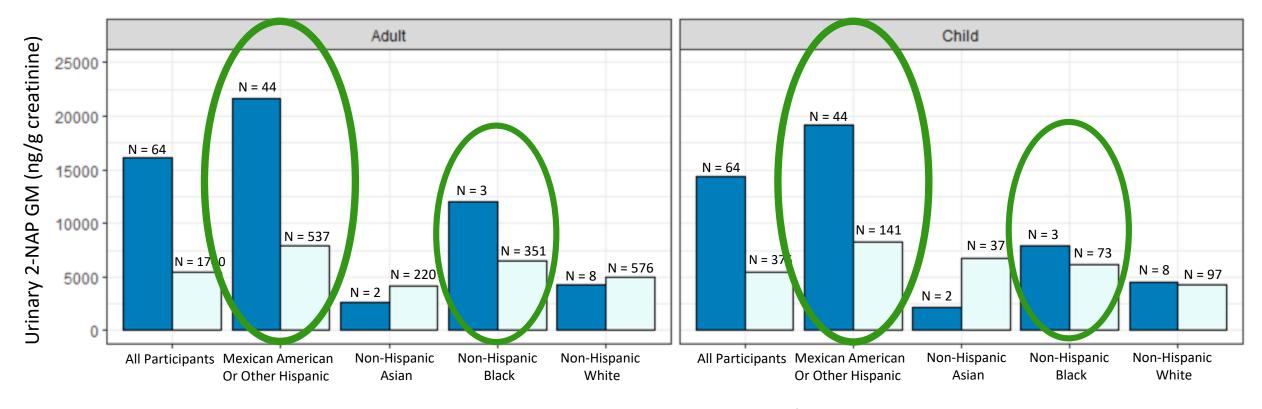
Intraclass Correlation Coefficient: Less than 0.5 are indicative of poor repeatability Between 0.5 and 0.75 indicate moderate repeatability Between 0.75 and 0.9 indicate good repeatability Greater than 0.90 indicate excellent repeatability


- 8 families provided daily samples over multiple consecutive days (N = 31)
- 2-NAP, 2-FLUO, and 1-PYR had good or excellent repeatability in adults
- 2-NAP had good repeatability in children
- Suggests consistent exposure


PAHs in Indoor Air and PAH Metabolites


- Using linear models, no significant associations were found between detection of PAHs in indoor air (Yes/No) and their corresponding urinary metabolites (p <0.05)
- Suggests indoor air is not a significant contributor to metabolite levels

Selected questions:


Urinary 2-NAP Associations with Race/Ethnicity and City of Residence

- Levels were approximately 3 times higher in Hispanic/Latino participants compared to non-Hispanic/Latino participants
- After adjusting for race/ethnicity, there were no significant differences in PAH levels between Fresno and Stockton

2-NAP Compared to NHANES by Race/Ethnicity

Creatinine adjusted urinary concentrations (ng/g) for 2-naphthol were higher in BiomSPHERE Hispanic/Latino and Black participants compared to NHANES

After adjusting for race/ethnicity, 2-NAP was significantly and positively associated with:

Products	Percent Used	Effect Estimate	
		Adults	Children
All-purpose spray or aerosol cleaners	34%	2.3	2.2
Carpet or upholstery cleaner	13%	1.2	2.5
Any air fresheners	64%	1.8	2.2
Air fresheners spray	48%	1.3	1.9
Plug in air fresheners	42%	3.9	3.2
Perfume	64%	2.3	Not reported

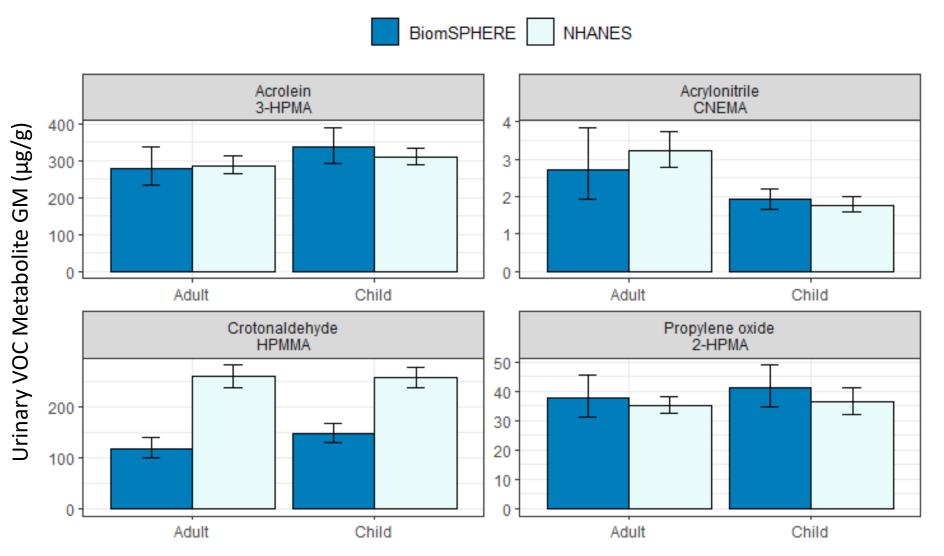
Contribution of Product Use to 2-NAP Levels

 We saw non-significant positive associations between other scented products use and 2-naphthol

After accounting for reported product use, urinary
 2-naphthol levels were still approximately 3 times higher in Hispanic/Latino populations

VOC Results

VOC Metabolites in Urine


		Adult (N = 64)		Child (N	= 64)
Parent Compound	Metabolite*	Detection Frequency (%)	Median (μg/g)	Detection Frequency (%)	Median (μg/g)
Acrolein	3-HPMA	100	293	100	331
Acrylonitrile	CNEMA	92	1.79	94	1.88
Benzene	PMA	31	NC	31	NC
1,3-Butadiene	1- & 2- MHBMA	6	NC	3	NC
Crotonaldehyde	НРММА	100	101	100	138
Propylene oxide	2-HPMA	100	38.1	100	39.1

NC: Not calculated due to low detection frequency

Medians include data that were imputed and adjusted for creatinine

^{*}Full chemical names are provided in the glossary included at the end of this presentation

VOCs in BiomSPHERE vs NHANES

NHANES Age Groups:

Adults: 20+ years Children: 6-11 years

Creatinine adjusted urinary geometric means (µg/g)

Temporal Variability in VOC Metabolite Levels

	НРММА	2HPMA	ЗНРМА	CNEMA
Adult	0.75	0.60	0.72	0.89
Child	0.35	0.46	0.53	0.52

Intraclass correlation coefficients for adjusted urinary concentrations ($\mu g/L$)

Intraclass Correlation Coefficient: Less than 0.5 are indicative of poor repeatability Between 0.5 and 0.75 indicate moderate repeatability Between 0.75 and 0.9 indicate good repeatability Greater than 0.90 indicate excellent repeatability

- 8 families gave daily samples over multiple consecutive days (N = 31)
- VOC metabolites had moderate to good repeatability in adults suggesting consistent exposure

Associations with Questionnaire Data

- No significant positive associations with any VOC metabolites
 - BiomSPHERE did not measure BTEX metabolites that showed significant associations with gas appliances and candle use in EBDEP
- The CDC panel (used in EBDEP) may include more relevant VOC metabolites to our exposures of interest
 - EHL has recently developed these capabilities

Overall Conclusions

- No significant associations between detection of PAHs in indoor air and their corresponding urinary metabolites
- Most levels of PAH and VOC metabolites in urine were similar to or lower than NHANES, except for 2-naphthol
- Correlations between adults and children and excellent repeatability of 2naphthol suggest a common and consistent source of naphthalene
- Urinary 2-naphthol was significantly higher in Hispanic/Latino participants
- Urinary 2-naphthol was positively associated with household cleaning products, air fresheners, and perfumes

Next Steps

- Community meeting in the fall
- Additional analyses:
 - Evaluate associations between biomarkers of exposure and biomarkers of response
 - Combine data from SAPEP, FRESSCA-Mujeres, and BiomSPHERE studies to identify:
 - Potential sources of naphthalene
 - Optimal biomarkers for air pollution exposures

Thank you to our participants and project collaborators!

Glossary

Abbreviation	Name	Synonyms used by the National Health and Nutrition Examination Survey (NHANES): https://www.cdc.gov/nchs/nhanes/					
Polycyclic Aromatic Hydroca	Polycyclic Aromatic Hydrocarbon (PAH) metabolites						
1-FLUO	1-Hydroxyfluorene						
2-FLUO	2-Hydroxyfluorene						
3-FLUO	3-Hydroxyfluorene						
1-NAP	1-Hydroxynaphthalene	1-Naphthol					
2-NAP	2-Hydroxynaphthalene	2-Naphthol					
1-PHEN	1-Hydroxyphenanthrene						
2-PHEN	2-Hydroxyphenanthrene						
3-PHEN and 4-PHEN	3-Hydroxyphenanthrene and 4-Hydroxyphenanthrene						
1-PYR	1-Hydroxypyrene						
Volatile Organic Compound (VOC) metabolites						
3-НРМА	3-Hydroxypropyl mercapturic acid	N-Acetyl-S-(3-hydroxypropyl)-L-cysteine					
CNEMA	2-Cyanoethyl mercapturic acid	N-Acetyl-S-(2-cyanoethyl)-L-cysteine					
PMA	Phenylmercapturic acid	N-Acetyl-S-(phenyl)-L-cysteine					
1-MHBMA and 2-MHBMA	1-Hydroxy-3-buten-2-yl-mercapturic acid and	N-Acetyl-S-(1-hydroxymethyl-2-propenyl)-L-cysteine					
	2-Hydroxy-3- buten-1-yl-mercapturic acid	and N-Acetyl-S-(2-hydroxy-3-butenyl)-L-cysteine					
НРММА	3-Hydroxy-1-methyl-propyl mercapturic acid	N-Acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine					
2-HPMA	2-Hydroxypropyl mercapturic acid	N-Acetyl-S-(2-hydroxypropyl)-L-cysteine					