Preliminary Results: Urinary Biomarkers of Response in Adults and Children from the San Joaquin Valley

Kimberly Valle, MS Department of Public Health University of California, Merced

kvalle2@ucmerced.edu

November 7, 2024
Biomonitoring California
Scientific Guidance Panel Meeting (Oakland, CA)

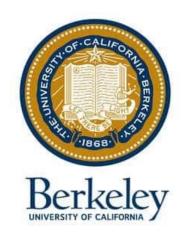
Disclosure

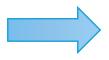
• The content is solely the responsibility of the authors and does not necessarily represent the official views of the collaborators involved.

The authors declare no conflict of interest.

• This research was supported by grants from the California Air Resource Board (#20RD012) and the California Office of Environmental Health Hazard Assessment (#21-E0016).

Project collaborators





Background – air pollution

- Exposure to air pollutants such as particulate matter 2.5 ($PM_{2.5}$), nitrogen dioxide, and ozone has been linked to adverse health effects.
- The San Joaquin Valley is burdened by high air pollution.
- Indoor air quality (IAQ) is especially important because adults and children spend most of their time indoors.
- Several factors contribute to poor IAQ, including:
 - Smoking, cooking, heating, the use of candles or incense, poor ventilation, the infiltration of traffic-related and other outdoor air pollutants.

Background – study design

- San Joaquin Valley Pollution and Health Environmental Research (SPHERE) Study
 - Environmental measurements
- Participant eligibility:
 - Adults aged 18+ with a child between the ages 3- 13 yrs.
 - N= 64 parent-child pairs
- Residents of Stockton or Fresno
- Spanish or English speakers
- February to November of 2023

- BiomSPHERE added a biomonitoring component to SPHERE
 - 64 parent-child urine samples
 - Subset of 8 families
 - Daily samples were collected over four consecutive days.
- Urine sample measurements:
 - Biomarkers of exposure (VOCs, PAHs, tobacco smoke).
 - Biomarkers of response indicating oxidative stress, inflammation, and airway injury.

Oxidative stress biomarkers

- 8-Isoprostane (8-Isop)
 - 8-Isop indicates lipid peroxidation caused by reactive oxygen species.
 - High levels of 8-Isop reflect oxidative stress.

- 8-hydroxy-2'-deoxyguanosine (8-OHdG)
 - Reflects DNA damage.
 - Increased levels of 8-OHdG have been associated with oxidative damage to genetic material.

Inflammation biomarker

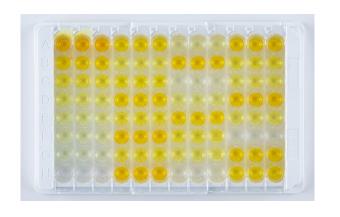
- Prostaglandin E2 (PGE2)
 - PGE2 reflects inflammation and may indicate the body's response to environmental stressors.
 - High levels of air pollution exposure have been associated with increased inflammatory responses.

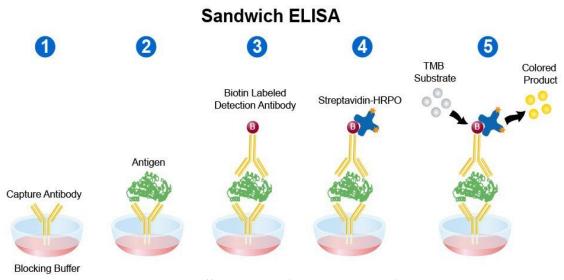
Airway injury biomarker

- Clara Cell Protein 16 (CC16)
 - Biomarker of airway injury to the respiratory tract lining.
 - Several studies showing that long term exposure to air pollutants damages CC16-producing club cells, leading to decreased levels of CC16, which may result in decrease lung function in adults and children.
 - Other studies have demonstrated that increased concentrations of CC16 can also indicate airway injury due to short-term air pollution exposure.

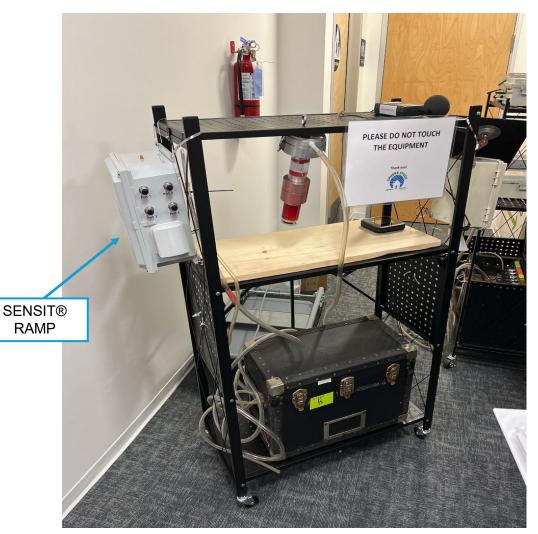
Study objectives

- 1. To examine the distribution of four urinary biomarkers of response in adults and children from the San Joaquin Valley.
- 2. To evaluate the association of the biomarkers with measurements of air pollutants in participant's homes.
- 3. To characterize the temporal variability in the biomarker measurements over several days.


Study design – urine samples

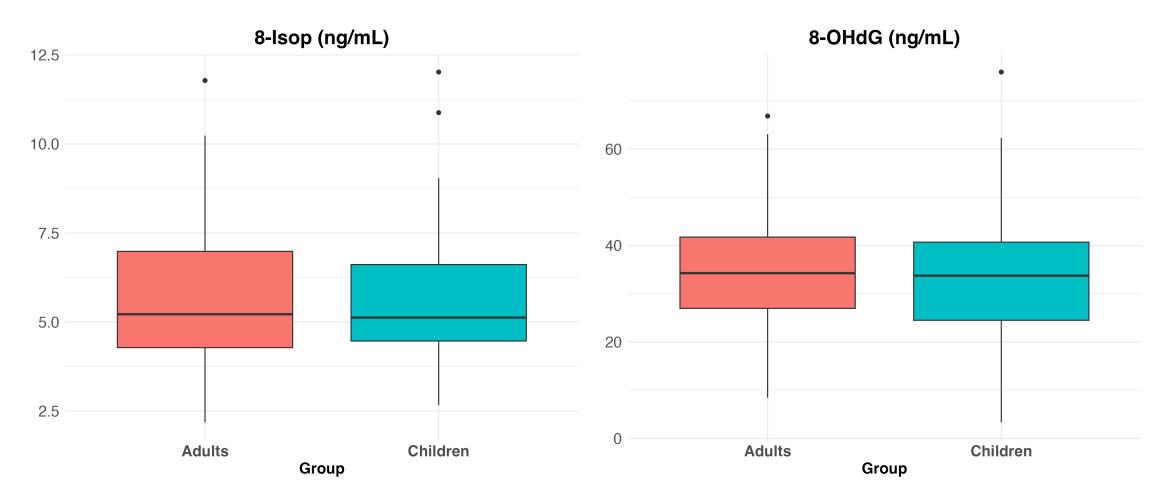

- 64 parent-child pairs
 - Morning samples, most were first morning voids
- Daily samples were collected over four consecutive days for a subset of 8 families
- Urine sample measurements (Holland Lab):
 - 8-Isop, 8-OHdG, PGE2 and CC16
- All biomarker measurements were adjusted for specific gravity^a (SG) and log₂ transformed

Biomarkers laboratory analysis

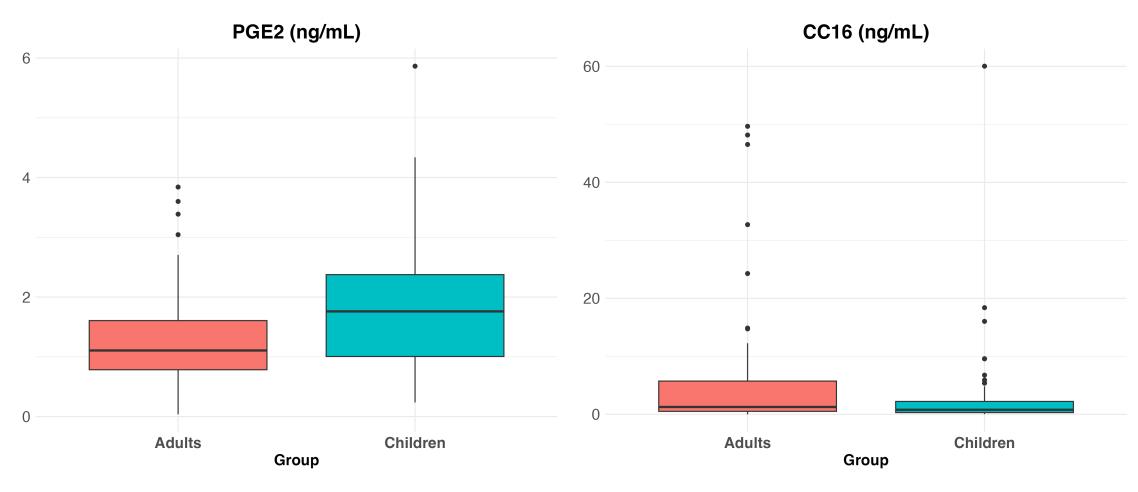

- Enzyme-Linked Immunosorbent Assays (ELISA)
- Holland laboratory at UC Berkeley
- ELISA kits used:
 - 8-Isop: Oxford Biomedical Research
 - 8-OHdG: Thermo Fisher Scientific
 - PGE2: R&D Systems
 - CC16: Abcam

Study design – indoor air monitoring

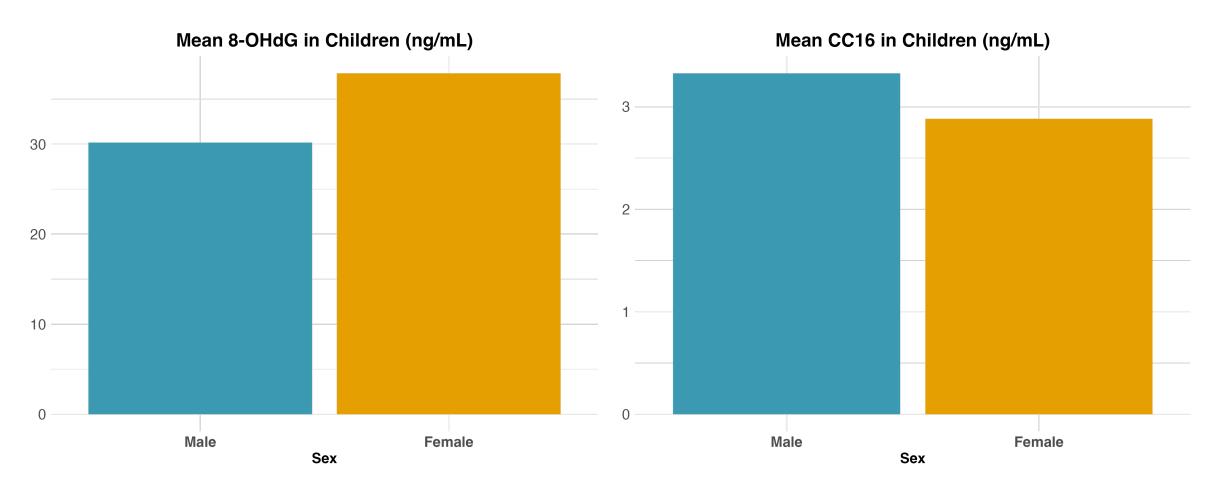
- Average computed for 12-hours prior to urine sample collection
 - SENSIT® RAMP (SENSIT Technologies)
 - Nitrogen dioxide (NO₂)
 - Ozone (O₃)
 - Particulate Matter 2.5 (PM_{2.5})
- Air pollutants were log₂ transformed for data analysis


Parent/guardian demographic characteristics (n=63)

_		n (%) or
		Mean ± SD
Language	English	32 (50.8)
	Spanish	31 (49.2)
Sex	Male	2 (3.2)
	Female	61 (96.8)
Race / Ethnicity	Asian	2 (3.2)
· · · · · · · · · · · · · · · · · · ·	Black/African American	3 (4.8)
	Hispanic/Latino	43 (68.3)
	White	8 (12.7)
	Two or more races	7 (11.1)
Relationship to child	Parent	60 (95.2)
-	Grandparent	3 (4.8)
Age (years)		42 (± 7.6)
Education Level	Have not graduated from high school	23 (36.5)
	High school graduate, GED, or equivalent	8 (12.7)
	Some college or AA degree	14 (22.2)
	College graduate or above	18 (28.6)
Income	Up to \$30,000	35(55.6)
	More than \$30,000 up to \$50,000	9 (14.3)
	More than \$50,000 up to \$75,000	19 (30.1)


Child demographic characteristics (n=62)

		n (%) or Mean ± SD
Sex	Male	32 (51.6)
	Female	30 (48.4)
Age (years)		8.9 (± 2.6)
BMI Category	Underweight	7 (11.3)
	Normal weight	17 (27.4)
	Overweight	16 (25.8)
	Obese	22 (35.5)


Distributions of oxidative stress biomarkers in adults and children

Distributions of inflammation (PGE2) and airway injury (CC16) biomarkers in adults and children

Significant mean differences in biomarkers of oxidative stress and airway injury in children

Short-term temporal variability of biomarkers of response (daily samples over four days)

Participant	n	Variance	8-Isop	8-OHdG	PGE2	CC16
Adult	30	Between	47%	32%	29%	66%
		Within	53%	68%	71%	34%
Child	31	Between	0%	19%	33%	53%
		Within	100%	81%	67%	47%

The adult samples include 23 first morning voids and 7 spot samples.

The children samples include 25 first morning voids and 6 spot samples.

Variance computed using linear mixed-effects models, with participant set as a random effect variable and sampling day set as a fixed effect variable.

Summary – biomarkers of response

- No significant differences among parent-child pairs for biomarkers of oxidative stress and airway injury.
- PGE2 (inflammation) was higher in children compared with adults.
- Female children had higher levels of 8-OHdG compared with male children.
- Female children had lower levels of CC16 compared with male children.
- There was higher within-subject variability compared with betweensubject variability among adults and children for biomarkers of oxidative stress and inflammation.
- There was higher between-subject variability compared with withinsubject variability among adults and children for CC16.

Relationship between biomarkers of response and indoor air quality

Distribution of pollutants in participating homes 12 hours prior to urine sample collection

Participant ^a	Pollutant	Units ^b	Mean	SD	Min	Max
Adult (n=56)	NO ₂ ^c	ppb	15.1	2.4	9.9	21.4
	O_3^d	ppm	0.012	0.005	0.004	0.022
	$PM_{2.5}^{e}$	$\mu g / m^3$	9.5	14.2	0.01	91.8
Child (n=57)	NO ₂ ^c	ppb	15.0	2.3	9.6	20.5
	O_3^d	ppm	0.012	0.005	0.004	0.022
	PM _{2.5} ^e	μg / m ³	12.4	19.3	0.01	112.6

^a Values differ due to difference in n for adult and children.

^b Units based on United States National Air Quality Standards.

^c Ozone (O₃)

^d Nitrogen dioxide (NO₂)

^e Particulate Matter 2.5 (PM_{2.5})

Relationship between biomarkers of response and air pollutants

- A two-fold increase in NO_2 exposure was significantly associated with a 2.4-fold increase in adult urinary PGE2 concentrations (p-value<0.05).
- A two-fold increase in O_3 exposure was significantly associated with a 2.6-fold increase in adult urinary CC16 concentrations (p-value<0.05).
- No significant associations between indoor air pollutants and biomarkers of response in children.

Overall summary

- Few studies have examined these biomarkers in communities disproportionately impacted by air pollution.
 - None have examined short term temporal variability.
- Among adults, we found positive associations between indoor NO_2 levels and PGE2, and indoor O_3 levels and CC16.
- No significant associations between air pollutants and the child biomarkers were observed.
- Except for CC16, the higher within-subject variability suggests that single measurements may not characterize longer-term oxidative stress or inflammation status.
- The high short-term variability could point to impacts of short-term exposures, although we did not observe associations between the measured air pollutants and response biomarkers in children.
- Additional studies are needed to better understand the nuances and utility of these biomarkers as indicators of air pollution exposure and morbidity.

Extensive additional laboratory measurements are complete or in progress

Additional laboratory measurements:	Analyzed by:	Status:		
Urinary Volatile Organic Compounds (VOCs) metabolites	UCSF	In progress		
Urinary Polycyclic Aromatic Hydrocarbons (PAHs) metabolites	UCSF	Complete; Preparing results return		
Cotinine – nicotine metabolites in urine	UCSF	Complete; Preparing results return		
PAHs in air	BEAR lab (UCB)	QA/QC in progress		
VOCs in air	EHLB	QA/QC complete		

Next steps

- Evaluating biomarkers measurements in relation to:
 - Urinary biomarkers of VOCs, PAHs, and tobacco smoke
 - Outdoor 24-hour monitoring for NO₂, O₃, and PM_{2.5}
 - PAHs in air (indoor and outdoor)
 - VOCs in air
 - Nearby traffic metrics (Tracking California Traffic Tool)
 - Ambient levels of criteria air pollutants from communityscience and regulatory monitoring over short to long-term periods (days, weeks, month) before urine collection
 - Health status (asthma diagnoses, medication use, etc.)

Community partners

- Tim Tyner
- Anabelle Garza
- Debra Manzo

- Matt Holmes
- Alexis Garcia
- JazMarie LaTour
- Jermaine Reece
- Jasmine Peterson

INIVERSITY OF CALIFORNIA MERCED

CDPH

California Department of Public Health

- PI: Elizabeth (Betsey)
 Noth <u>noth@berkeley.edu</u>
- PI: Rosemary Castorina
- Robert Gunier
- Nina Holland
- Weihong Guo
- Thomas Kirchstetter
- Chelsea Preble
- Marley Zalay
- Aditya Simha
- Rezahn Abraha

- PI: Asa Bradman
- <u>abradman@ucmerced.edu</u>
- Adriana Espinosa
- Estrella Herrera
- Kimberly Valle

- Kazukiyo Kumagai
- Jeff Wagner
- Zhong-Min Wang
- Flavia Wong
- Jianwen She
- Josephine DeGuzman

Children's Environmental Health Laboratory- UCB

References

Arsalane, K., Broeckaert, F., Knoops, B., Clippe, A., Buchet, J. P., & Bernard, A. (1999). Increased Serum and Urinary Concentrations of Lung Clara Cell Protein in Rats Acutely Exposed to Ozone. *Toxicology and Applied Pharmacology*, 159(3), 169-174. https://doi.org/10.1006/taap.1999.8738

Guerra, S., Halonen, M., Vasquez, M. M., Spangenberg, A., Stern, D. A., Morgan, W. J., Wright, A. L., Lavi, I., Tarès, L., Carsin, A.-E., Dobaño, C., Barreiro, E., Zock, J.-P., Martínez-Moratalla, J., Urrutia, I., Sunyer, J., Keidel, D., Imboden, M., Probst-Hensch, N., . . . Martinez, F. D. (2015). Relation between circulating CC16 concentrations, lung function, and development of chronic obstructive pulmonary disease across the lifespan: a prospective study. *The Lancet Respiratory Medicine*, 3(8), 613-620. https://doi.org/10.1016/s2213-2600(15)00196-4

Guerra, S., Vasquez, M. M., Spangenberg, A., Halonen, M., & Martinez, F. D. (2013). Serum concentrations of club cell secretory protein (Clara) and cancer mortality in adults: a population-based, prospective cohort study. *The Lancet Respiratory Medicine*, 1(10), 779-785. https://doi.org/10.1016/s2213-2600(13)70220-0

Hashemzadeh, B., Idani, E., Goudarzi, G., Ankali, K. A., Sakhvidi, M. J. Z., Akbar Babaei, A., Hashemzadeh, H., Vosoughi, M., Mohammadi, M. J., & Neisi, A. (2019). Effects of PM2.5 and NO2 on the 8-isoprostane and lung function indices of FVC and FEV1 in students of Ahvaz city, Iran. Saudi Journal of Biological Sciences, 26(3), 473-480. https://doi.org/10.1016/j.sjbs.2016.11.008

Havet, A., Zerimech, F., Sanchez, M., Siroux, V., Le Moual, N., Brunekreef, B., Stempfelet, M., Künzli, N., Jacquemin, B., Matran, R., & Nadif, R. (2018). Outdoor air pollution, exhaled 8-isoprostane and current asthma in adults: the EGEA study. European Respiratory Journal, 51(4), 1702036. https://doi.org/10.1183/13993003.02036-2017

Heldal, K. K., Barregard, L., Larsson, P., & Ellingsen, D. G. (2013). Pneumoproteins in sewage workers exposed to sewage dust. *International Archives of Occupational and Environmental Health*, 86(1), 65-70. https://doi.org/10.1007/s00420-012-0747-7

Mann, J. K., Lutzker, L., Holm, S. M., Margolis, H. G., Neophytou, A. M., Eisen, E. A., Costello, S., Tyner, T., Holland, N., Tindula, G., Prunicki, M., Nadeau, K., Noth, E. M., Lurmann, F., Hammond, S. K., & Balmes, J. R. (2021). Traffic-related air pollution is associated with glucose dysregulation, blood pressure, and oxidative stress in children. *Environmental Research*, 195, 110870. https://doi.org/10.1016/j.envres.2021.110870

Nauwelaerts, S. J. D., Van Goethem, N., Ureña, B. T., De Cremer, K., Bernard, A., Saenen, N. D., Nawrot, T. S., Roosens, N. H. C., & De Keersmaecker, S. C. J. (2022). Urinary CC16, a potential indicator of lung integrity and inflammation, increases in children after short-term exposure to PM(2.5)/PM(10) and is driven by the CC16 38GG genotype. *Environ Res*, 212(Pt B), 113272. https://doi.org/10.1016/j.envres.2022.113272

Provost, E. B., Chaumont, A., Kicinski, M., Cox, B., Fierens, F., Bernard, A., & Nawrot, T. S. (2014). Serum levels of club cell secretory protein (Clara) and short- and long-term exposure to particulate air pollution in adolescents. Environment International, 68, 66-70. https://doi.org/10.1016/j.envint.2014.03.011

Schneider, J. C., Card, G. L., Pfau, J. C., & Holian, A. (2005). Air Pollution Particulate SRM 1648 Causes Oxidative Stress in RAW 264.7 Macrophages Leading to Production of Prostaglandin E2, a Potential Th2 Mediator. *Inhalation Toxicology*, 17(14), 871-877. https://doi.org/10.1080/08958370500244498

Stapleton, A., Casas, M., García, J., García, R., Sunyer, J., Guerra, S., Abellan, A., Lavi, I., Dobaño, C., Vidal, M., & Gascon, M. (2022). Associations between pre- and postnatal exposure to air pollution and lung health in children and assessment of CC16 as a potential mediator. *Environmental Research*, 204, 111900. https://doi.org/10.1016/j.envres.2021.111900

Stockfelt, L., Sallsten, G., Olin, A. C., Almerud, P., Samuelsson, L., Johannesson, S., Molnar, P., Strandberg, B., Almstrand, A. C., Bergemalm-Rynell, K., & Barregard, L. (2012). Effects on airways of short-term exposure to two kinds of wood smoke in a chamber study of healthy humans. *Inhal Toxicol*, 24(1), 47-59. https://doi.org/10.3109/08958378.2011.633281

Svecova, V., Rossner, P., Jr., Dostal, M., Topinka, J., Solansky, I., & Sram, R. J. (2009). Urinary 8-oxodeoxyguanosine levels in children exposed to air pollutants. *Mutat Res*, 662(1-2), 37-43. https://doi.org/10.1016/j.mrfmmm.2008.12.003

Yan, W., Yun, Y., Ku, T., Li, G., & Sang, N. (2016). NO2 inhalation promotes Alzheimer's disease-like progression: cyclooxygenase-2-derived prostaglandin E2 modulation and monoacylglycerol lipase inhibition-targeted medication. Scientific Reports, 6(1), 22429. https://doi.org/10.1038/srep22429

Zhang, A. L., Balmes, J. R., Lutzker, L., Mann, J. K., Margolis, H. G., Tyner, T., Holland, N., Noth, E. M., Lurmann, F., Hammond, S. K., & Holm, S. M. (2022). Traffic-related air pollution, biomarkers of metabolic dysfunction, oxidative stress, and CC16 in children. *J Expo Sci Environ Epidemiol*, 32(4), 530-537. https://doi.org/10.1038/s41370-021-00378-6