Initial Results from the East Bay Diesel Exposure Project

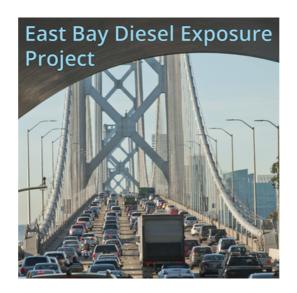
Asa Bradman, MS, PhD

Center for Environmental Research and Children's Health
School of Public Health
University of California, Berkeley

Presentation to the Scientific Guidance Panel Meeting November 6, 2019

EBDEP Study Team

UC Berkeley: Asa Bradman, Rosemary Castorina, Kelsey Ranjbar, Marina Rowen,
 Victor Aguilar, Natalia Garban, Ruby Salazar, Jessica Yescas, Regan Patterson
 OEHHA: Sara Hoover, Duyen Kauffman, Russell Bartlett, Dan Sultana
 University of Washington: Chris Simpson, Michael Paulsen



Thank you to our supporting partners

Lawrence Berkeley Lab:

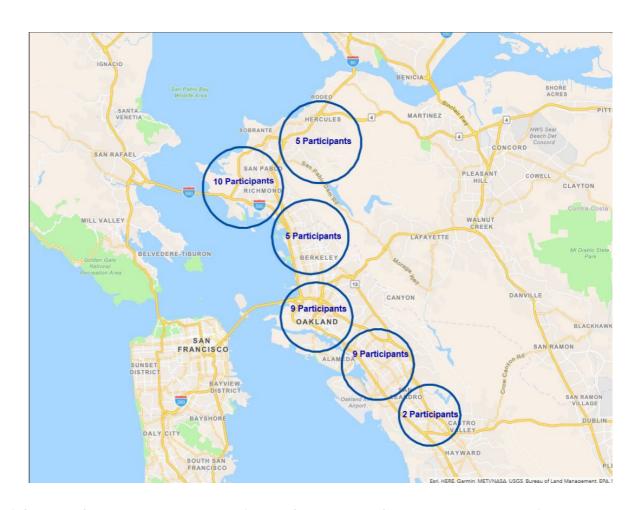
Thomas Kirchstetter, Chelsea Preble, Rebecca Sugrue

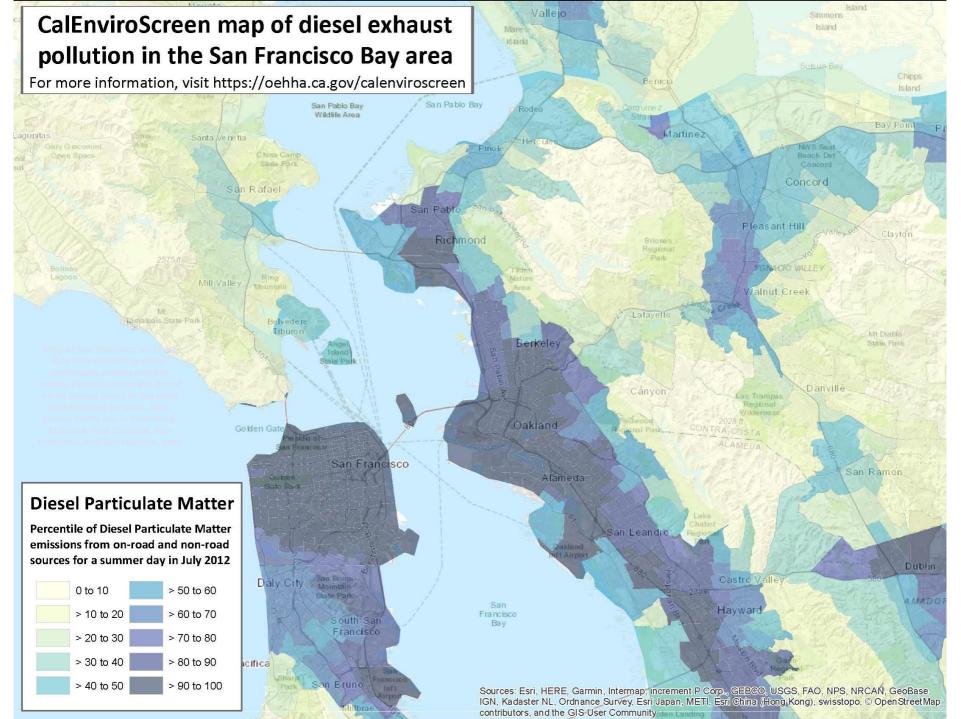
West Oakland Environmental Indicators Project:

Ms. Margaret Gordon, Brian Beveridge

Biomonitoring California staff

Project Goals


- Assess exposures to diesel exhaust in impacted communities of the East Bay
- Compare exposures in parent-child pairs to increase understanding of exposure patterns:
 - ➤ Within a household
 - **≻**Over time
 - ➤ Between communities
- Evaluate predictors of diesel exhaust exposure, such as truck traffic
- Generate data to help evaluate the effectiveness of diesel regulations in California
- Engage with community and policymakers about study results


EBDEP Locations

East Bay

- Oakland
- Richmond
- Other locations along freeways (I-80, I-580, I-880)
- 40 families

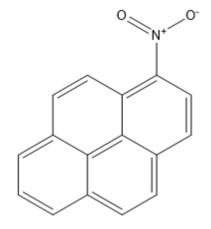
Choice of locations informed by CalEnviroScreen diesel particulate matter indicator

CalEnviroScreen Diesel PM Emissions and Scores - EBDEP Summary

	Median	25th percentile	75th percentile	Range
Daily diesel PM emissions (kg/day)	33	21	43	3-76
Diesel PM indicator score	88	74	94	9-99

Notes: CalEnviroScreen data is reported at the census tract level. The above values are based on participants' home addresses.

PM: particulate matter


CalEnviroScreen Diesel PM and Scores in Selected EBDEP Study Areas

Location	N	Diesel PM (kg/day) Range	Diesel PM Indicator Score Range
El Sobrante	3	3 - 15	9 - 45
Pinole	3	11 - 18	31 - 53
Richmond	9	17 – 44	52 - 95
West Oakland	8	76	99
East Oakland	10	19 - 51	59 - 96

^{*}Based on home addresses of participants

1-Nitropyrene (1-NP)

- 1-NP is formed during combustion by nitration of polycyclic aromatic hydrocarbons (PAHs) within diesel engines
 - ➤1-NP is the most abundant particle-associated nitro-PAH in diesel exhaust
- More specific than other diesel exhaust exposure indicators (e.g., black carbon)
- Metabolites of 1-NP can be measured in urine as an exposure biomarker
 - ➤ 6-hydroxy-1-nitropyrene (6-OHNP)
 - 8-hydroxy-1-nitropyrene (8-0HNP)

Study Design

- Forty child-parent pairs
 Children 2-10 years old
- Urine, indoor air, and vacuum bag/canister dust

- Two sampling rounds for each household, ~4-6 months apart
 - ➤ 25 families collected single urine samples for each round
 - >15 families collected daily urine samples for four days for each round
- Field work conducted between January 2018 and February 2019

Data Collection and Laboratory Measurements

- Exposure questionnaire, activity diary, home visit
- GPS data logger for child
- Urinary biomarkers 1-NP metabolites
 - **≻**6-OHNP
 - **>8-0HNP**
- Environmental measurements: 1-NP in indoor air and dust
- Indoor monitoring of black carbon using sensor developed by Lawrence Berkeley Laboratory

GPS Data Logger

Latest EBDEP Timeline

February 2019

Last samples collected and sent to University of Washington (UW) for analysis

June-July 2019

Results return materials submitted to and approved by Institutional Review Boards

October 2019

Final datasets for urinary 1-NP metabolites and 1-NP in air filters and dust received from UW

All results returned to participants

November 2019

Preliminary statistical analyses completed

December 2019-January 2020

Community meetings planned

Overview of analyses presented today

- EBDEP demographics and selected exposure characteristics
- Urinary 1-NP metabolite levels
 - Summary statistics
 - Comparisons between children and parents
 - Within- and between-subject variability
 - Changes over time
- 1-NP metabolite levels in relation to:
 - Income
 - Race/ethnicity
- 1-NP levels in indoor air and dust
- Preview of GIS analyses

EBDEP Parents: Demographic Information

Gender (%)	
Female adults	95
Male adults	5
Ethnicity (%)*	
African American	20
Hispanic/Latino	40
Caucasian	35
Asian	5
American Indian/Alaskan Native/Other Pacific Islander	5
Prefer not to identify	3
Age, mean (SD)	36.2 (8.1)

N=40 parents

^{*}Some individuals selected more than one ethnicity

EBDEP Parents: Education and Income

Education (%)	
High school diploma, GED, technical school	20
Some college	20
College/graduate degree	60
	Blank cell
Income (%)	
\$0 — 25,000	20
\$25,000 – 75,000	40
> \$75,000	38
Prefer not to answer/don't know	5

N=40 parents

EBDEP Children: Demographic Information

Gender (%)	
Female children	53
Male children	48
Ethnicity (%)*	
African American	23
Hispanic/Latino	45
Caucasian	40
Asian	8
American Indian/Alaskan Native/Other Pacific Islander	5
Prefer not to identify	10
Age (%)	
2 – 5 years	83
6 – 10 years	17
Age, mean (SD)	4.6 (2.1) years

N=40 children

^{*}Some individuals selected more than one ethnicity.

Selected Exposure Characteristics

	(%)
Parent work location	
At home	45
Outside the home	55
	Blank cell
Parent works with/around diesel	
Yes	28
No	72
	Blank cell
Child daytime	
location (Mon – Fri)	
Home	33
School/Childcare	67
blank cell	Blank cell
Smoking at home	
Yes	3
No	97

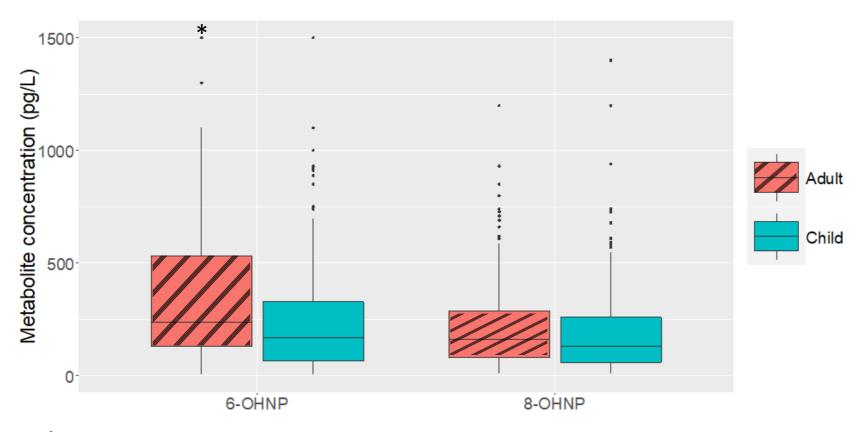
Results for 1-NP Metabolites in Urine

- Reported in picograms/liter (pg/L) and adjusted for specific gravity
 - ➤ Reference value of 1.017 (NHANES 2007-2008) chosen to be consistent with CARE-LA
- Method detection limits (MDLs)
 - >6-OHNP 16 pg/L
 - >8-OHNP 21 pg/L
- For purposes of initial statistical analyses presented here:
 - Results for 6-OHNP and 8-OHNP were averaged for each participant across both time points

1-NP Urinary Metabolite Concentrations

	Metabolite	n	DF (%)	GM	Median (IQR)	95th percentile
Adult	6-OHNP	138	98	250	240 (130 - 530)	1500
	8-OHNP	150	95	160	160 (83 - 290)	730
Child	6-OHNP	155	94	150	170 (64 - 330)	1000
	8-OHNP	168	95	130	130 (61 - 260)	740

n: number of samples


Results reported in pg/L, specific gravity adjusted

DF: detection frequency

GM: geometric mean

IQR: interquartile range (25th –75th percentile)

1-NP Metabolite Levels are Higher in Adults than Children

^{*}T-test p-value<0.05

12 outliers above 1500 pg/L were excluded from boxplot for scale

Urinary 1-NP Metabolites Correlation Matrix

		Ch	ild	Adult		
		6-OHNP	8-OHNP	6-OHNP	8-OHNP	
Child	6-OHNP	1		0.16*	0.14 (p=125)	
Ciliu	6-OHNP	1	(11–130)	(n=116) 0.15*	0.22	
	8-OHNP		1	(n=126)	(n=137)	
Adult	6-OHNP			1	0.72 ** (n=148)	
	8-OHNP	1			1	

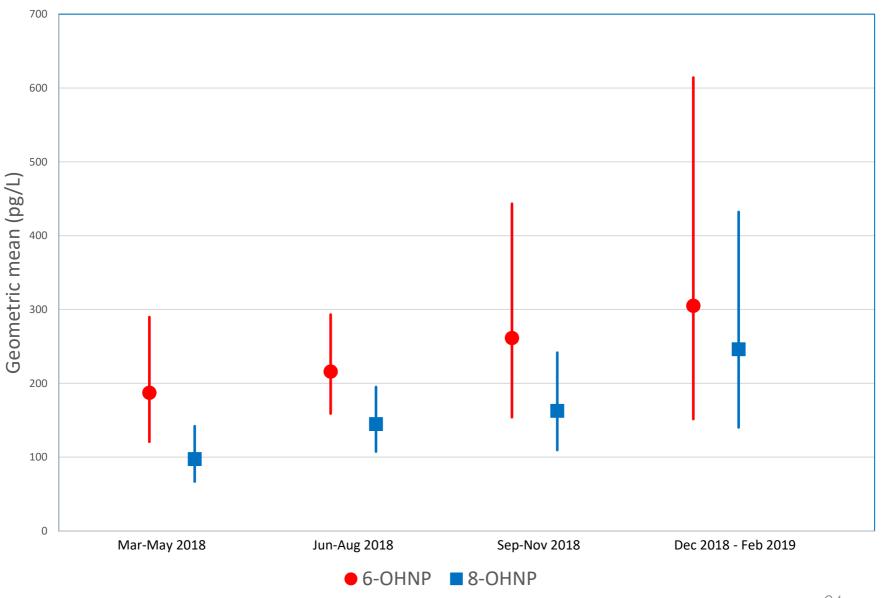
^{**}Pearson r p-value<0.05

Units: pg/L

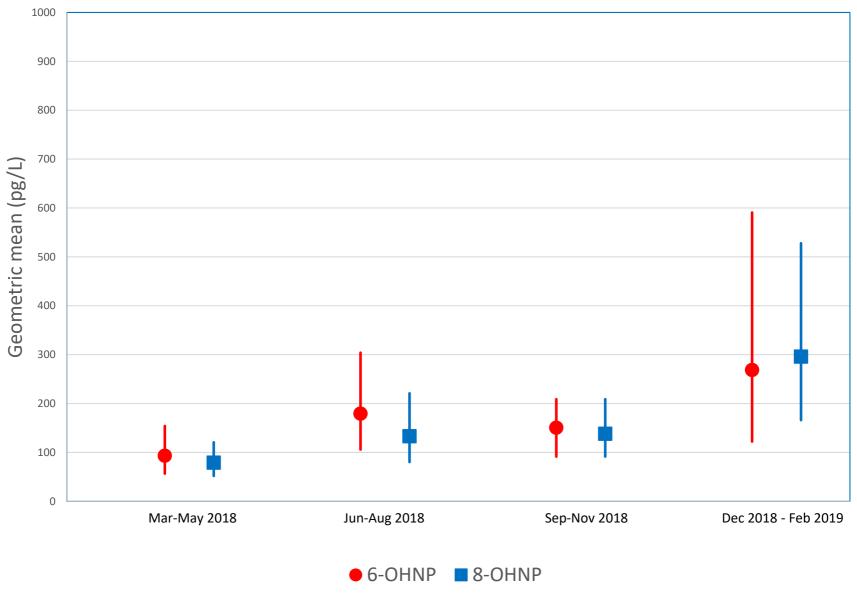
n: number of samples (shown in parentheses)

1-NP Metabolite Within- and Between-Subject Variability

		6-OHNP			8-OHNP	
blenk blenk	Variance	% of Variance	JEE	Variance	% of Variance	ICC
Child						
Between	0.12	37%	0.37	0.07	33%	0.33
Within	0.19	63%		0.14	67%	BLAMK
Adult		Blank	Blank	Blank	Blank	BLANK
Between	0.11	40%	0.40	0.09	42%	0.42
Within	0.16	60%		0.12	58%	


• Interclass correlation (ICC): measure of reliability that reflects degree of correlation and agreement between each subject's measurements

1-NP Metabolite Within- and Between-Subject Variability


BLANK BLANK	BLANK	6-OHNP	BLACK	BLANK	8-OHNP	BLACK
BLANK BLANK	Variance	% of Variance	ICC	Variance	% of Variance	ICC
Child	BLANK	PLANS	BLANK	BLANK		BLANK
Between	0.12	37%	0.37	0.07	33%	0.33
Within	0.19	63%	BLANK	0.14	67%	BLANK
Adult	PLANK	PLANK	BLANK	BLANK	PLANK	BLANK
Between	0.11	40%	0.40	0.09	42%	0.42
Within	0.16	60%		0.12	58%	

- Interclass correlation (ICC): measure of reliability that reflects degree of correlation and agreement between each subject's measurements
- ➤ Within-subject variability is > between-subject variability

1-NP Metabolites in Adults Over Time

1-NP Metabolites in Children Over Time

1-NP Metabolite Levels in Relation to Demographics of Parents

	6-OHNP	8-OHNP		
Ethnicity of parent				
African American	290 (110, 790)	230 (81, 640)		
Hispanic/Latino	270 (180, 400)	140 (100, 180)		
Caucasian	330 (190, 580)	190 (120, 280)		
Other [†]	220 (40, 1200)	170 (31, 940)		
Family income				
<\$25,000	160 (74, 330)	110 (58, 190)		
\$25,000-\$75,000	270 (190, 400)	150 (110, 210)		
>\$75,000	420* (270, 650)	230* (150, 360)		

[†]Category includes Asian, American Indian/Alaskan Native/Other Pacific Islander, and individuals who selected more than one ethnicity. Individuals who preferred not to identify ethnicity were not included in this analysis.

Units: pg/L N=40 parents

*ANOVA p-value<0.05

1-NP Metabolite Levels in Relation to Demographics of Children

	Givi (35% Confidence interval)			
	6-OHNP	8-OHNP		
Ethnicity of child				
African American	180 (66, 490)	170 (80, 350)		
Hispanic/Latino	190 (130, 300)	160 (100, 230)		
Caucasian	180 (75 <i>,</i> 430)	160 (69, 380)		
Other [†]	220 (130, 360)	190 (100, 340)		
Family income				
<\$25,000	180 (110, 300)	130 (68, 260)		
\$25,000-\$75,000	230 (170, 310)	200 (150, 270)		
>\$75,000	200 (95, 410)	180 (89, 360)		

[†]See previous slide for details.

Units: pg/L N=40 children

1-NP Levels in Indoor Air and Dust

Media	n samples	DF (%)	GM	Median (IQR)	95 th percentile
Air (pg/m³)	78	77	0.43	0.43 (0.33-0.54)	0.86
Dust (pg/g)	37	97	370	340 (180 - 620)	2,700

MDLs

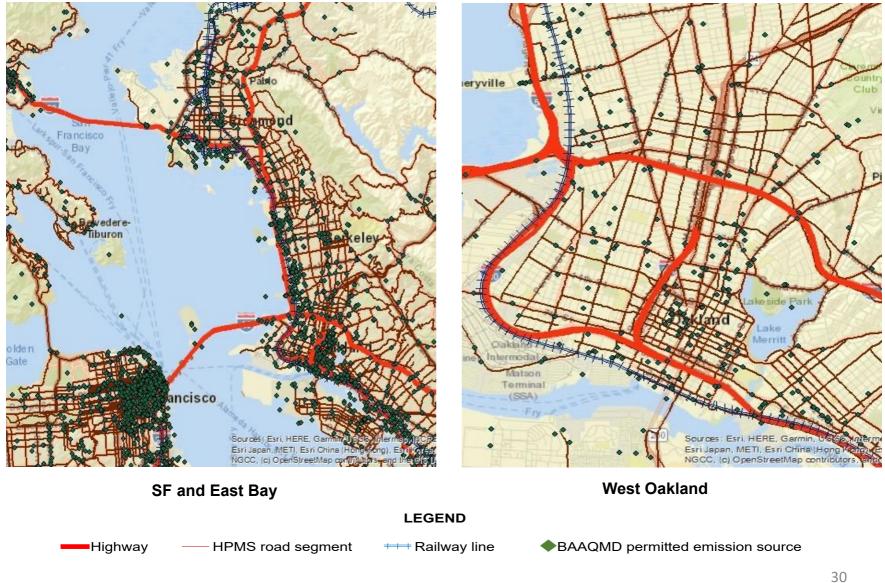
Air: $0.16 \text{ pg/filter} (\sim 0.3 \text{ pg/m}^3)$

Dust: 15 pg/g

➤ Air and dust levels are moderately correlated (Pearson r=0.46; p-value<0.01)

GIS Source Layers

On-road sources


- Highway Performance Monitoring System (HPMS)
 - ➤ AADT: Annual average daily traffic
 - ➤ HPMS road segments
- Bus routes and stops (AC Transit and Amtrak)
- Caltrans Truck Network
- Railway road crossings
- Major roads (primary highways, secondary roads)
- Caltrans Bottlenecks (tracks highway congestion)

Non-road sources

- Railway lines
- Industrial land use zoning maps (county)
- Ports
- Permitted stationary emission sources (BAAQMD), including gas stations, auto repair/body shops, industrial facilities

Maps of Potential Diesel Sources

Example Map of EBDEP GPS Logger Data*

^{*}Example rendering not based on actual data

Traffic Volume near Participant's Residence, Work, and School/Childcare

- Daily counts (2017) from U.S. Highway Performance Monitoring System (HPMS)
- Compute daily vehicle-kilometers-traveled (VKT) near home within:
 - > 500 meters
 - ≥1000 meters
 - ≥2000 meters
- For:
 - >All vehicles
 - ➤ Buses and commercial trucks
 - ➤ Tractor-trailers (e.g., 18-wheelers)

Traffic Volume by Buffer Zone

Vehicle kilometers traveled per day (VKT)* within 500, 1000, and 2000 meter buffer zones around participants' homes

	Median	25th %	75th %
500 m			
All vehicles	43,934	29,677	178,127
Buses/commercial trucks	910	434	3,609
Tractor-trailer	465	197	3,784
1000 m			
All vehicles	290,012	132,693	469,998
Buses/commercial trucks	7,316	1,693	10,330
Tractor-trailer	6,189	960	10,752
2000 m			
All vehicles	1,212,973	877,307	1,434,472
Buses/commercial trucks	26,874	20,471	34,022
Tractor-trailer	24,576	19,136	31,815

^{*}VKT are based on traffic counts by road segment lengths

GIS Analysis Plan

- Within each buffer area:
 - Quantify traffic volumes
 - Identify rail and maritime sources
 - Identify stationary sources

➤ Examine associations between diesel sources and EBDEP results (urinary 1-NP metabolite levels; 1-NP levels in indoor air and dust)

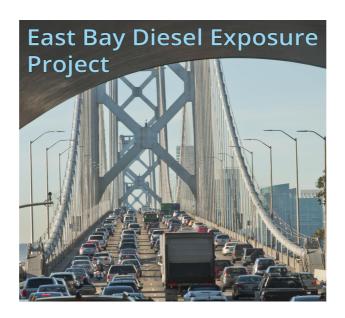
Innovative Aspects of EBDEP as a Biomonitoring California Study

- Measured urinary 1-NP metabolites in children
- Collected samples at two time points for all participants
 - > Provides data to examine time trends within families
- Collected daily samples from some participants to examine within- and between-subject variability
- Collected complementary environmental samples
 - ➤ Developed methods to measure 1-NP in air filters and dust


Next Steps for Data Analyses

- Examine predictors of diesel exhaust exposure
 - ➤ Work-related exposures
 - Traffic volume and other sources near home, work, school or childcare
 - Rail and maritime sources
 - ➤ Indoor indicators of diesel exhaust (e.g., 1-NP in air and dust)

{Will also evaluate household combustion sources as potential confounder}


- Account for time-activity patterns
 - Time spent in transit and at fixed locations
- Evaluate other factors that can impact diesel exhaust exposures, including:
 - ➤ Ambient air quality (e.g., PM_{2.5}, NO₂)
 - ➤ Meteorological information (e.g., rain)

EBDEP provides a rich dataset to better understand diesel exhaust exposures and inform exposure reduction

We would like to thank all the participating families for their valuable time and effort!

Questions and Discussion

