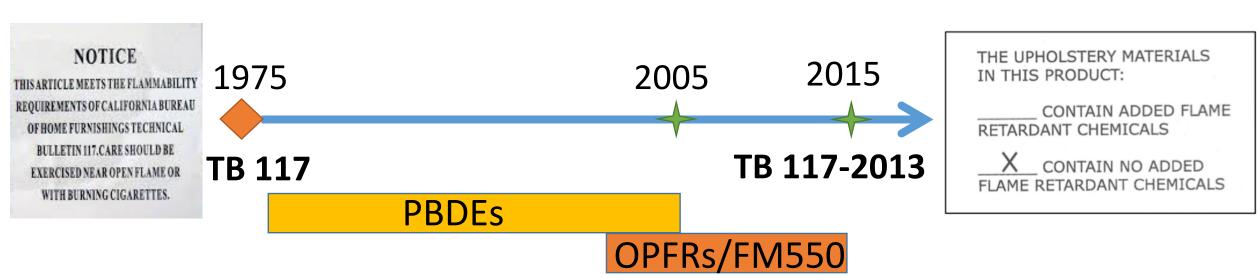
Flame Retardant Concentrations in House Dust: Before and After Replacing Upholstered Furniture

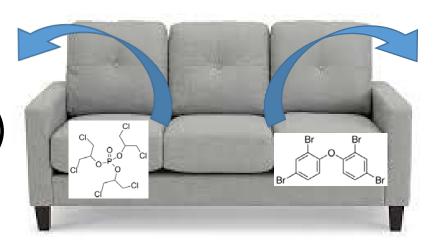
Rebecca Moran*, Deborah Bennett*, Thomas Young*, Kathryn Rodgers +

*Silent Spring Institute

^{*}University of California, Davis

Motivation


California revised the state's furniture flammability standard (TB117), which can now be met without adding flame retardants to foam (TB117-2013). As a result, flame retardant-free couches are available.


Study Goals

- Determine whether flame retardant concentrations in dust decrease when couches or seat cushion foam are replaced
- Collaborate with Biomonitoring California to measure flame retardants in blood and urine from a subset of participants (FREES: Foam Replacement Environmental Exposure Study)

Flame Retardants

- Polybrominated Diphenyl Ethers (PBDEs)
- Firemaster 550 (FM550)
- Organophosphate Flame Retardants (OPFRs)

Two Groups Recruited

Bay Area/Sacramento Area

- Currently owned a couch likely to contain flame retardants
- Planning to replace couch OR foam within 1 year of recruitment
- Willing to replace couch OR foam with a flame retardant-free option
- Participants responsible for couch or foam replacement -> time to replace couch varied

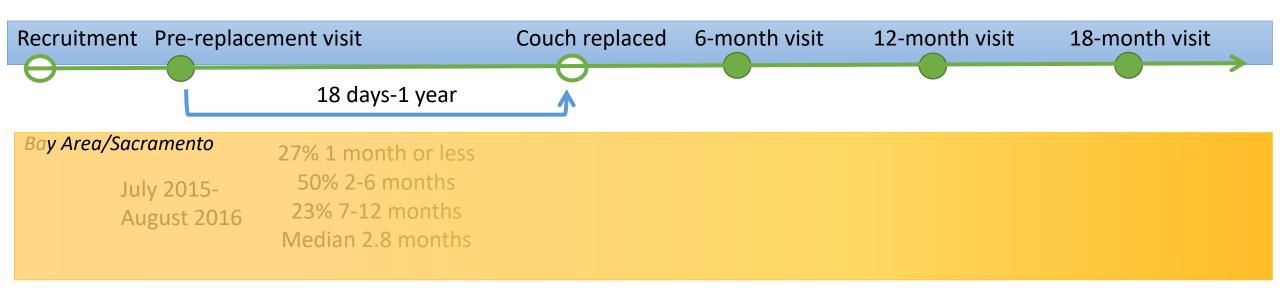
San Jose

- Currently owned a couch likely to contain flame retardants
- Lived in one of two low-income apartment complexes
- Willing to have couch replaced with a flame retardant-free couch supplied by study
- All homes were on same timeline for home visits and couch replacements

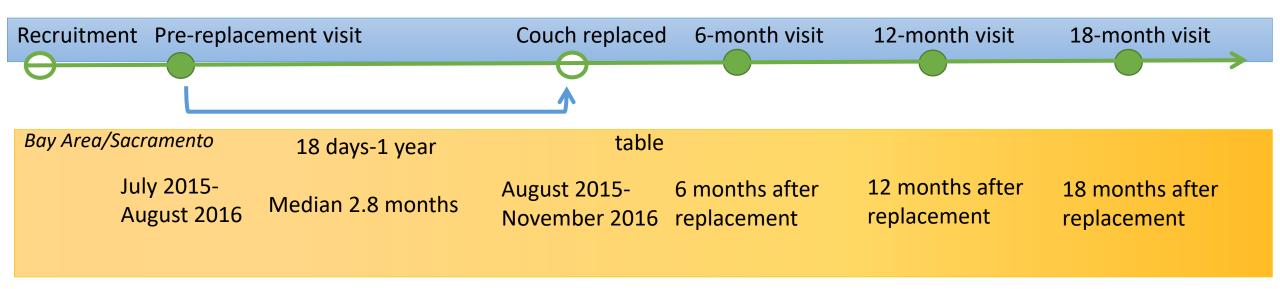
Dust sample collected

O No sample collected

Recruitment Pre-replacement visit Couch replaced 6-month visit 12-month visit 18-month visit


- Dust sample collected
- O No sample collected

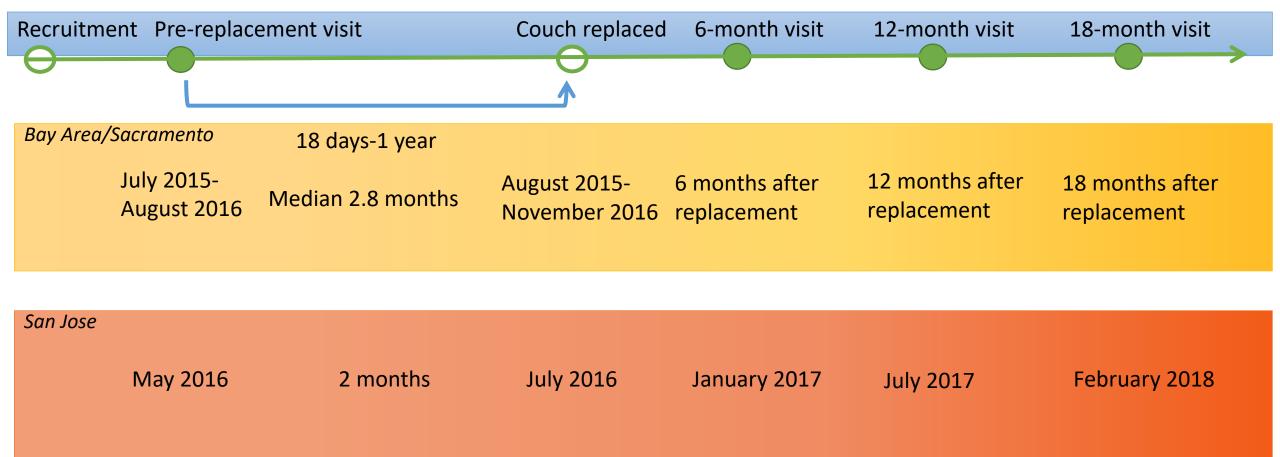
Recruitment Pre-replacement visit Couch replaced 6-month visit 12-month visit 18-month visit


Bay Area/Sacramento

July 2015-August 2016

- Dust sample collected
- No sample collected

- Dust sample collected
- No sample collected


Dust sample collected

No sample collected

- Dust sample collected
- No sample collected

Household Retention

Bay Area/Sacramento Area

	Completed	Moved/Dropped out
Consent	28	
Initial Visit	28	0
6-month Visit	22	6
12-month Visit	21	1
18-month Visit	21	0

Replacement Type	Total
Couch	8
Foam	12
Removal	2

San Jose

	Activity Completed	Lost to follow-up/ Moved/Dropped out
Consent	14	
Initial Visit	13	1
6-month Visit	11	2
12-month Visit	11	0
18-month Visit	8	3

Replacement couch provided by study

Study Dust Collection: Mighty-Mite Vacuum Method

Crevice tool. attachment

Dust Sample Collection

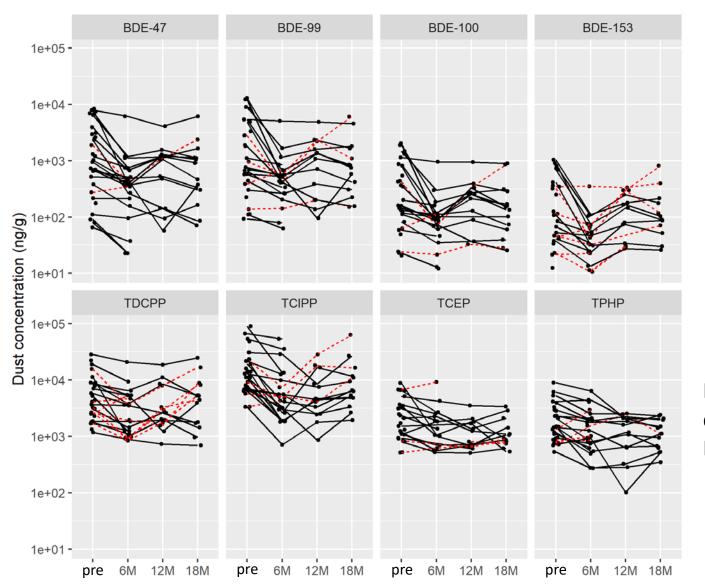
- Main living area
- Equivalent of room's floor surface area
- NO upholstered furniture
- NOT under furniture

Sieve, measure 100 mg 3:1 hexane:acetone Repeat once with acetone Sonication **Evaporation and Filtration**

Dust Analytical Methods

Instrumental Analysis:

- -Agilent 7200B GC-qTOF-MS
- -Column: HP-5MS (30m x 0.25 mm, 0.25 μm)
- -Temperature: gradient, linear increase 35 325 °C
- -Data Acquisition: 80 minutes, El mode (70 eV)

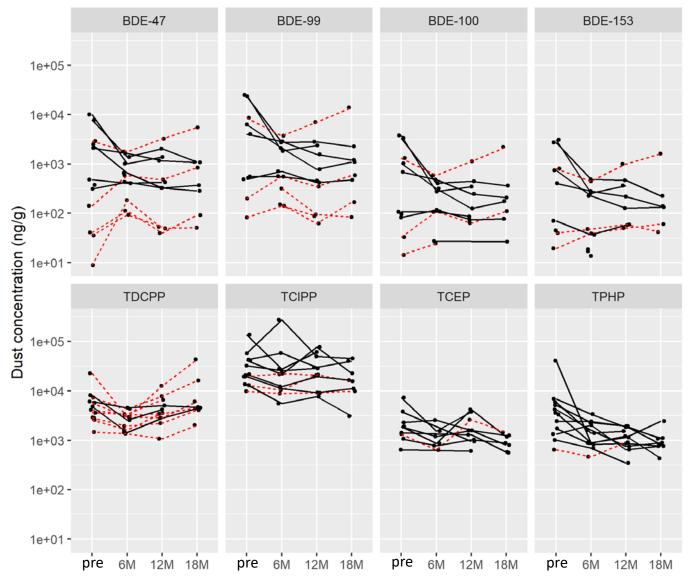

Target Compound Analysis:

- -7 Brominated flame retardants (BDEs)
- -7 Non-brominated flame retardants

Flame Retardant Chemicals Analyzed

Class	Compound Name	Abbreviation
	2,2',4,4'-Tetrabromodiphenyl ether	BDE-47
PBDEs	2,2',4,4',5-Pentabromodiphenyl ether	BDE-99
PDDLS	2,2',4,4',6-Pentabromodiphenyl ether	BDE-100
	2,2',4,4',5,5'-Hexabromodiphenyl ether	BDE-153
	Tris (1-chloro-isopropyl) phosphate	TCIPP
OPFRs	Triphenyl phosphate	TPHP
OPFRS	Tris(2-chloroethyl) phosphate	TCEP
	Tris(1,3-dichloro-2-propyl) phosphate	TDCPP

Bay Area/Sacramento Results: Flame Retardant Levels Over Time



Trend
FR decrease in house
FR increase in house

Notes: Preliminary results – do not cite or quote

Non-detects (i.e., < Method Reporting Limit [MRL]) not shown; values between the MRL and Limit of Quantification (LOQ) are included

San Jose Results: Flame Retardant Levels Over Time

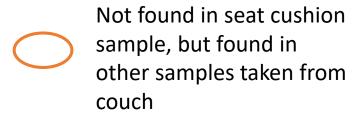
Trend
FR decrease in house
FR increase in house

Notes: Preliminary results – do not cite or quote

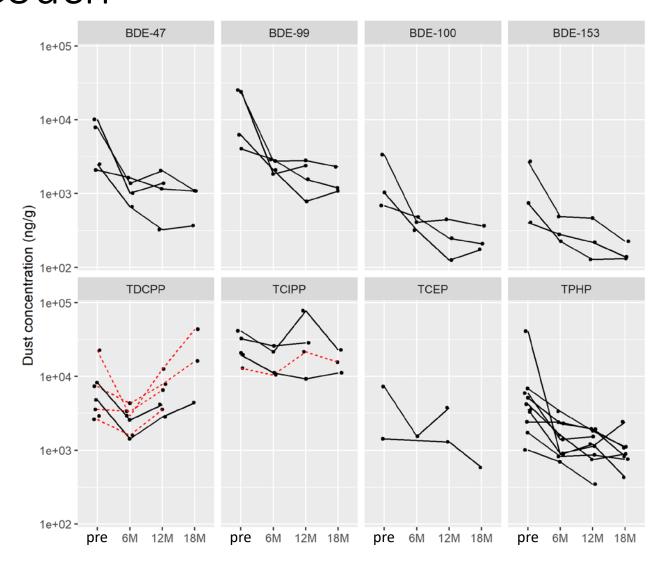
Non-detects (i.e., < Method Reporting Limit [MRL]) not shown; values between the MRL and Limit of Quantification (LOQ) are included

Foam Sample Collection

- Bay Area/Sacramento
 - Small pieces of seat cushion foam
 - If participant was willing and foam was accessible
- San Jose
 - Large block of seat cushion foam
 - Arm rest foam
 - Fabric: seat, arm rest, backing, and decking


Location	Foam collected from existing couch				
Bay Area/Sacramento	13/22				
San Jose	11/11				

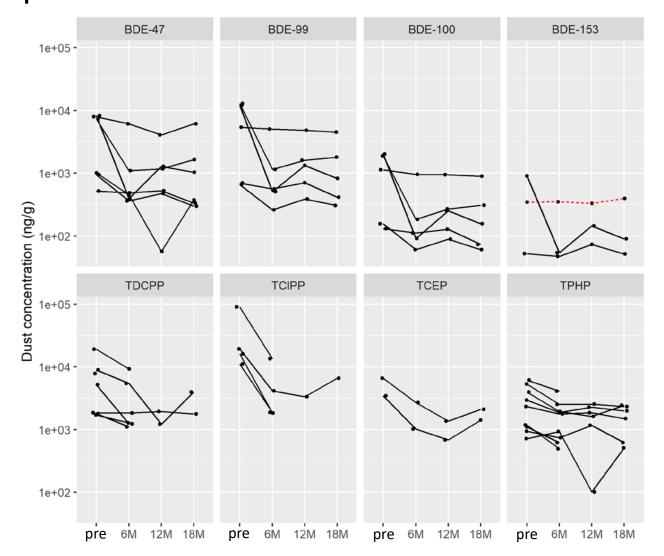
Detections of flame retardants in existing couches - Bay Area/Sacramento


		TCEP	TCIPP	TDCIPP	TPHP	BDE-47	BDE-99	BDE-10	0 BDE-153
Α	cushion			х					
В	cushion				X				
С	cushion				Х				
D	cushion			х					
E	cushion	Х	Х	х					
F	cushion			х					
G	cushion				Х				
н	cushion				Х	Х	Х	Х	х
ı	cushion				Х	Х	Х	Х	х
J	cushion		Х						
К	cushion			х	Х				
L	cushion				Х	Х	Х	Х	х
М	cushion			Х					
Perce	ent Detect	8%	15%	46%	54%	23%	23%	23%	₁₄ 23%

Detections of flame retardants in existing couches- San Jose

		TCEP	TCIPP	TDICPP	TPHP	BDE-47	BDE-99	BDE-100	BDE-153
Α	cushion				Х				
	other				X	X	X	X	X
В	cushion	Х			Х				
	other	X	(x)		X				
С	cushion				Х				
C	other				X				
	cushion				Х				
D	other		Х	х	X				
U	cushion				Х				
	other			х	X				
_	cushion			Х	Х				
E	other			Х					
F	cushion				Х				
	other		Х	х	Х	X	X	X	X
G	cushion	Х							
<u> </u>	other	Х		х					
Н	cushion			X	Х				
	other			Х	Х				
	cushion	Х	Х	Х					
	other	Х	X	Х	X				
	cushion				X	Х	X	X	Х
	other				Х	Х	Х	Х	Х
J	cushion				X				
,	other				Х				
K	cushion				Χ				
	other		Х	х	Χ	Х	х		15
Percen	t Detect	23%	38%	62%	92%	31%	31%	23%	23%

San Jose Results: Flame Retardants Found in Couch



Trend
——— FR decrease in house
----- FR increase in house

Notes: Preliminary results – do not cite or quote

Non-detects (i.e., < Method Reporting Limit [MRL]) not shown; values between the MRL and Limit of Quantification (LOQ) are included

Bay Area/Sacramento Results: Flame Retardants Suspected in Couch

Trend

——— FR decrease in house

----- FR increase in house

Notes: Preliminary results – do not cite or quote

Non-detects (i.e., < Method Reporting Limit [MRL]) not shown; values between the MRL and Limit of Quantification (LOQ) are included

Conclusions

- Timing for people to replace foam or purchase couch was variable and complicated logistics
- Good completion rates for the homes that replaced foam or bought own couch
- Overall decreases in dust concentrations after homes replaced couch or foam
- Incorporating flame retardants detected in couches helps interpret data
 - limited by the samples collected from couches in the Bay Area/ Sacramento group, as the more detailed foam and fabric analysis in the San Jose group indicated different compounds were used in different couch components
- Unexpected increases in some homes; we will further investigate home surveys to identify other potential sources of flame retardants

Thank You!

- Participants
- Myrto Petreas
- June-Soo Park
- Arlene Blum

- Katya Roudneva
- Tasha Stoiber
- Veronica Chin

