Potential Designated Chemicals

Selected Aroma Chemicals

Gail Krowech, Laurel Plummer, and Sara Hoover Office of Environmental Health Hazard Assessment

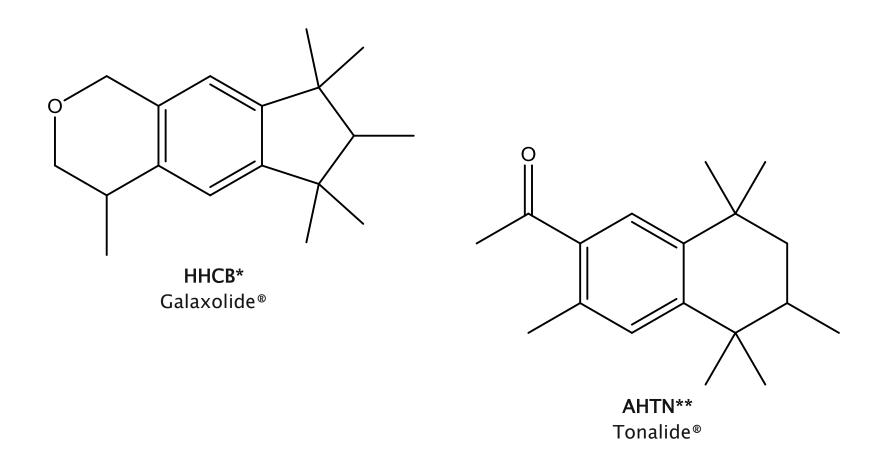
> Presentation to Scientific Guidance Panel Sacramento, CA

> > November 14, 2013

What are designated chemicals?

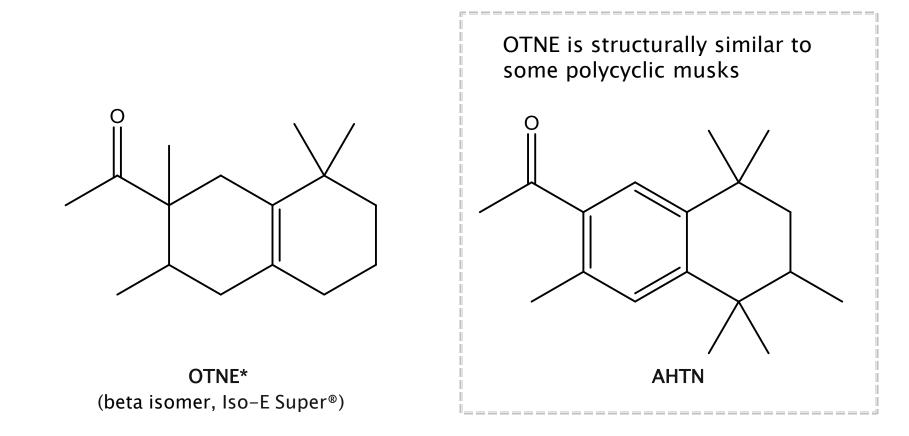
- Chemicals that can be considered for biomonitoring by the Program
- Consist of
 - Chemicals that are part of CDC's National Reports on Human Exposure to Environmental Chemicals program
 - Chemicals that the Scientific Guidance Panel has recommended be added to the list of designated chemicals

Background


November 2012 SGP Meeting:

- Presentation on screening of four classes of synthetic musks and a structurally related aroma chemical (Iso E Super[®])
- SGP requested documents to support consideration of these aroma chemicals as potential designated chemicals

Implementing SGP recommendation

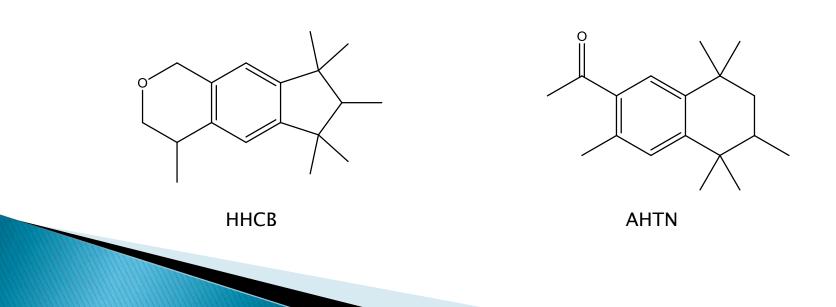

- Two classes for consideration today structurally similar, common analytical method
 - Synthetic polycyclic musks
 - Tetramethyl acetyloctahydronaphthalenes
- Other classes not under consideration today
 - Nitro musks low or no current use
 - For future consideration
 - Macrocyclic musks
 - Alicyclic musks

Polycyclic musks- example structures

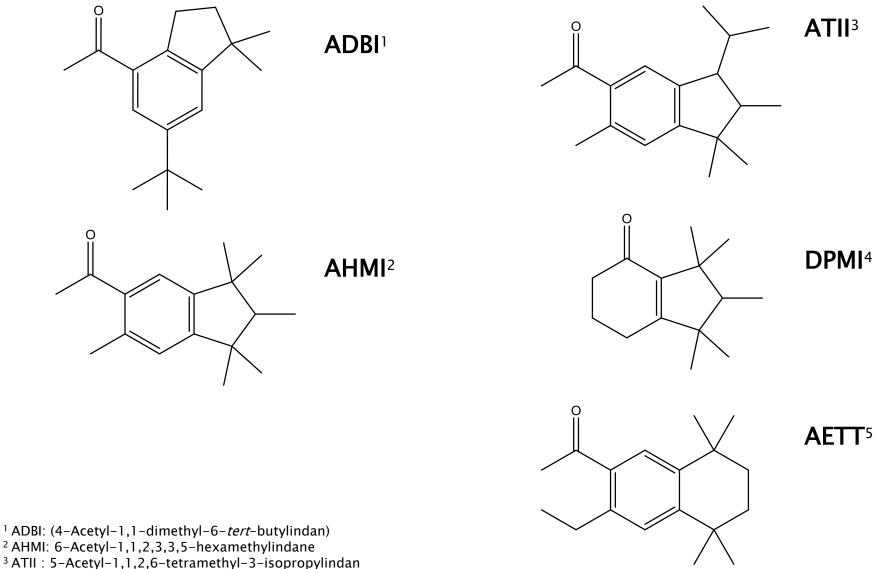
*HHCB: 1,3,4,6,7,8-Hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[g]-2-benzopyran **AHTN: 7-Acetyl-1,1,3,4,4,6-hexamethyltetrahydronaphthalene

Tetramethyl acetyloctahydronaphthalenes

*OTNE: 1-(1,2,3,4,5,6,7,8-Octahydro-2,3,8,8-tetramethyl-2-naphthalenyl)ethanone


Criteria for Panel to recommend designated chemicals

- Exposure or potential exposure to the public or specific subgroups
- The known or suspected health effects based on peer-reviewed scientific studies
- The need to assess the efficacy of public health actions to reduce exposure
- The availability of a biomonitoring analytical method with adequate accuracy, precision, sensitivity, specificity, and speed
- The availability of adequate biospecimen samples


The incremental analytical cost to perform the biomonitoring analysis for the chemical

Polycyclic musks

- Widely used in personal care products and some cleaning products
- Replacements for nitro musks (e.g., musk xylene)
- Highlighting two HHCB and AHTN which have been commercially most important

Other polycyclic musks

⁴ DPMI: 6,7-Dihydro-1,1,2,3,3-pentamethyl-4[5*H*]indanone

⁵ AETT: Acetylethyltetramethyltetralin

Polycyclic musks

U.S. Production/Import Volume (pounds)						
	1986	1994	1998	2002	2006	2012
ННСВ	500K-1M	1-10M	1-10M	1–10M	1-10M	3.1 M
AHTN	10-500K	10-500K	1-10M	NR	NR	CBI *220-330K
DPMI	10-500K	10-500K	10-500K	10-500K	NR	CBI

<u>Table notes:</u> Source: U.S. EPA (2002;2006; 2012) unless otherwise noted NR=not reported; volume is less than U.S. EPA reporting threshold CBI= Reported as Confidential Business Information *AHTN volume of use in North America, reported as 220-330K lbs in 2011 (IFRA-NA)

Polycyclic musks Use and exposure

Personal care products

- Perfumes/fragrances
- Body lotions/body creams
- Deodorants/antiperspirants
- Shower gels/shaving cream
- Shampoo/conditioner products
- Hand soaps/bar soaps

Reiner and Kannan (2006) Dodson et al. (2012)

Polycyclic musks Use and exposure

Household products

- Carpet cleaner
- Furniture polish
- Dish soap
- Laundry detergent

- Stain remover
- Fabric softener
- Liquid bleach
- Disinfecting wipes

Reiner and Kannan (2006) Dodson et al. (2012)

Polycyclic musks:

Example levels in personal care products

HHCB

- Body splash 4,990 µg/g
- $^\circ$ Body lotion 3,740 $\mu g/g$
- Deodorant 2,250 µg/g
- Shaving cream 1,230 µg/g

AHTN

- Perfume 451 µg/g
- Deodorant 438 µg/g
- Body cream 145 µg/g

Reiner and Kannan (2006)

Polycyclic musks: Example levels in consumer products

Personal care products

- Bar soap $>100-1000 \ \mu g/g$ (HHCB); $>1-100 \ \mu g/g$ (AHTN)
- Hand soap $>1-100 \ \mu g/g$ (HHCB, DPMI)

Household cleaning products

- Dish liquid $>100-1000 \ \mu g/g$ (HHCB)
- Carpet cleaner $>100-1000 \ \mu g/g$ (HHCB)
- Laundry detergent $>1-100 \ \mu g/g$ (HHCB, AHTN)
- Dryer sheets $>1-100 \ \mu g/g$ (HHCB, AHTN)
- Polish/wax $>1-100 \ \mu g/g$ (HHCB, DPMI)
- Air freshener $>1-100 \ \mu g/g$ (HHCB)

Dodson et al. (2012)

Polycyclic musks Levels in house dust

Samples collected as part of the Canadian House Dust Study, 2007-2010 (n=49)

Household vacuum cleaner dust					
	Detection frequency (%)	Median (ng/g)	Range (ng/g)		
ННСВ	100	992	36-31,100		
AHTN	100	405	91-2,360		

Kubwabo et al. (2012)

Polycyclic musks Environmental occurrence in U.S.

- Main environmental source is effluent from wastewater treatment plants (WWTPs)
 - HHCB and AHTN detected in:
 - fish caught in WWTP effluent waters (sampled in 2006)
 - sewage sludge (biosolids)
 - some drinking water
 - run-off from agricultural fields irrigated with treated wastewater (California)

Polycyclic musks Detections in biota

- Bivalves in San Francisco Bay
 - HHCB, AHTN, ADBI, AETT detected in 2002-2003 sampling
 - HHCB, AHTN, ADBI, AETT detected in mussels in 2009-2010 sampling

Fish

- Levels dependent on location, and on metabolism and lipid content of fish
- Marine mammals

 Finless porpoises (Japan): Level in one porpoise was comparable to level in its fetus

Polycyclic musks Known or suspected health effects

- Indications of endocrine activity
 - In vitro
 - Weak estrogenicity
 - Inhibition of estrogen, androgen, and progesterone activity
 - Decreased progesterone and cortisol synthesis
 - In vivo
 - Anti-estrogenicity (transgenic zebrafish, trout)
- Other *in vitro* biological activity
 - AHTN caused changes in the activation of certain signaling pathways (mouse embryonic stem cells)
 - Several polycyclic musks inhibited efflux transporters (mussel gill tissue)

Properties of polycyclic musks

Lipophilic chemicals

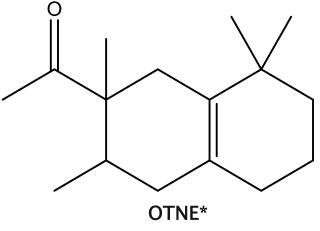
Polycyclic musk	Log K _{ow}
ННСВ	5.9*
AHTN	5.7*
ADBI	5.4**
AHMI	5.8**
DPMI	4.5**
AETT	6.4 (<i>est</i>)*

- Potential to bioaccumulate in some species
- Some indications of persistence (e.g., experimental studies in soils amended with sludge)

*SRC (2013) **Cited in Rimkus et al. (1999)

Polycyclic musks Biomonitoring studies

- Multiple studies in blood, breast milk, adipose tissue (HHCB and AHTN)
- Several studies reported levels increased with use of personal care products
- Most studies from Europe and Asia
- Few studies from the U.S.


Polycyclic musks Biomonitoring studies

Breast milk – Massachusetts (n=39)

- HHCB: detection frequency: 97%
 - Mean: 220 ng/g lipid
 - Range: <5 917 ng/g lipid
- AHTN: detection frequency: 56%
 - Mean: 46.8 ng/g lipid
 - Range: <5-144 ng/g lipid

Reiner et al. (2007)

Tetramethyl acetyloctahydronaphthalenes

(beta isomer, Iso-E Super®)

- Woody, floral, or amber fragrances
- Widely used in personal care products and some cleaning products

*OTNE: 1-(1,2,3,4,5,6,7,8-Octahydro-2,3,8,8-tetramethyl-2-naphthalenyl)ethanone

Tetramethyl acetyloctahydronaphthalenes

U.S. Production/Import Volume (pounds)						
	1986	1994	1998	2002	2006	2012
54464–57–2 (beta isomer)	10K-500K	500K-1M	500K-1M	1M-10M	1M -10M	1M -10M
68155-67-9 (alpha isomer)	NR	10K-500K	500K-1M	1M-10M	1M-10M	CBI
68155-66-8 (gamma isomer)	NR	10K-500K	500K-1M	500K-1M	1M-10M	CBI
54464–59–4 ("4 th " isomer)	NR	NR	NR	NR	500K-1M	CBI

Source: U.S. EPA (2002;2006;2012) NR=not reported; volume less than U.S. EPA reporting threshold CBI= Reported as Confidential Business Information

Tetramethyl acetyloctahydronaphthalenes **Uses and exposure: Examples**

Personal care products

- Perfume/cologne
- Soap/shower gels/shampoo
- Body lotion/skin conditioner

Cleaning products

- Air freshener
- Laundry detergent
- Fabric softener

Levels of OTNE in house dust

Samples collected as part of the Canadian House Dust Study, 2007-2010 (n=49)

Household vacuum cleaner dust						
	Detection frequency (%)	Median (ng/g)	Range (ng/g)			
OTNE	82	212	nd – 5,620			
Compared to polycyclic musks						
ННСВ	100	992	36 - 31,100			
AHTN	100	405	91 - 2,360			

nd = not detected

Kubwabo et al. (2012)

Tetramethyl acetyloctahydronaphthalenes Environmental occurrence

- Main environmental source is effluent from wastewater treatment plants (WWTPs)
- OTNE detected in:
 - Influent and effluent wastewater
 - Sewage sludge
 - Levels comparable to the polycyclic musks HHCB and AHTN

Tetramethyl acetyloctahydronaphthalenes Bioaccumulation and persistence

Bioaccumulation

- Lipophilic: $\log K_{ow} > 5$
- Experimental BCFs (Bioconcentration Factors) do not suggest bioaccumulation (below 1000)

Persistence

- Few published studies
- No evidence of persistence based on available data

Tetramethyl acetyloctahydronaphthalenes Known or suspected health effects

- Few toxicological data for tetramethyl acetyloctahydronaphthalenes are publicly available
- Structurally similar to AHTN, which has shown some potential for endocrine and other biological activity

Summary – Polycyclic musks

- High levels in personal care and household cleaning products
- Potential to bioaccumulate in some species
- Potential for endocrine and other biological activity
- Detected in:
 - Various environmental samples, including house dust
 - Human blood, breast milk, adipose tissue samples

Summary -

Tetramethyl acetyloctahydronaphthalenes

- OTNE high production volume chemical
- Detected in dust, wastewater treatment plant influent and effluent, biosolids
- Structurally similar to AHTN

Laboratory analysis

- Methods for analysis of some of these chemicals available in the literature
- Laboratory would develop methods to measure polycyclic musks and tetramethyl acetyloctahydronaphthalenes in serum samples
- Analysis could likely be bundled

Need to assess efficacy of public health actions

- Widespread use of these aroma chemicals in California and in the U.S.
- Biomonitoring would:
 - Determine whether these chemicals are found in California residents and at what levels
 - Track levels over time

Options for the Panel

- Designate: "synthetic polycyclic musks" as a class
- Designate: "tetramethyl acetyloctahydronaphthalenes" as a class
- Postpone decision
- Decide against designating