Preliminary Screening Information on Possible Classes of Chemicals Used in UV Applications for Future Consideration

Materials for November 3, 2016 Meeting of the Scientific Guidance Panel for Biomonitoring California¹

The purpose of this document is to provide background information to the Scientific Guidance Panel (SGP) on two possible chemical classes for future consideration as potential designated chemicals under Biomonitoring California: benzophenones and phenolic benzotriazoles. Both of these classes are used in ultraviolet (UV) applications.²

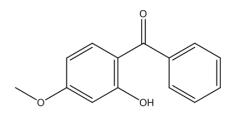
The current document was developed in response to the Panel's request at their November 2010 meeting for the Program to review sunscreen chemicals as a broad category. Evaluating chemical classes provides flexibility to quickly respond to shifts in chemical use; supports the development of broad laboratory panels and non-targeted screening; and uses Program resources efficiently.

For six example chemicals in each class, we summarize preliminary screening information on:

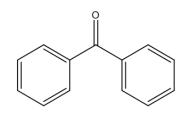
- Chemical identity
- Use and production/import volume
- Some toxicity information
- Selected detections in biological and environmental samples
- Selected information from EPI Suite³

At the November 3 meeting, the Panel will provide input on what next steps, if any, should occur on these two classes. The SGP could request that OEHHA prepare a potential designated chemical document on one or both of these classes; propose further screening or continued tracking of the classes; advise no further action on either class; and/or suggest other classes for possible consideration.

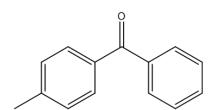
¹ California Environmental Contaminant Biomonitoring Program, codified at Health and Safety Code section 105440 et seq.


² "UV applications" includes uses as UV stabilizers, UV absorbers, or photoinitiators, for example.

³ Estimation Program Interface Suite™ available at: https://www.epa.gov/tsca-screening-tools/download-epi-suitetm-estimation-program-interface-v411


Benzophenones

Benzophenones are used as UV absorbers, UV stabilizers and/or photoinitiators in: sunscreens and other personal care products; plastics, including food contact plastics; paints and other coatings; inks and lacquers for paperboard, including food packaging; fragrances; and pesticide formulations. Structures for six example benzophenones are shown below.


Benzophenone-3 (BP-3) (already designated)

Benzophenone

4-Methylbenzophenone

Benzophenone-1 (BP-1)

Benzophenone-4 (BP-4)

Benzophenone-12 (BP-12)

Chemical identity	US production/ import volume (lbs)	EPI Suite information ⁴		Some toxicity information	Selected detections
Benzophenone-3 (BP-3) ⁵ CASRN: 131-57-7 Synonyms: (2-hydroxy-4-methoxyphenyl)- phenylmethanone; oxybenzone Metabolites include: BP-1, BP-2, BP-8	1986: >500K - 1M 1990: >1M - 10M 1994: >1M - 10M 1998: >1M - 10M 2002: 10K - 500K 2006: No data 2012: 100K - 500K	MW: Log Kow: Water sol: BCF: Half-lives (holding water Soil Sediment	228.25 3.79 (exp) 68.56 mg/L 38.24 L/kg urs) 1.28 900 1,800 8,100	 Indications of estrogenic, anti-estrogenic, and anti- androgenic activity Cytotoxic in human neuroblastoma cells at environmentally relevant doses ToxCast⁶: endocrine activity; immune- and inflammation- related effects 	 Urine Serum Breast milk Adipose tissue Aquatic organisms (fish, mussels, clams) Dust
Benzophenone CASRN: 119-61-9 Synonym: diphenylmethanone Metabolites include: 4-hydroxy-benzophenone	1986: >1M - 10M 1990: >1M - 10M 1994: >1M - 10M 1998: >1M - 10M 2002: >1M - 10M 2006: 1 - <10M 2012: 3,867,158	MW: Log Kow: Water sol: BCF: Half-lives (holding water Soil Sediment	182.22 3.18 (exp) 103.3 mg/L 15.14 L/kg urs) 72.2 360 720 3.240	 Carcinogenicity (listed under Proposition 65) Indications of estrogenic and anti-androgenic activity ToxCast: endocrine activity; developmental toxicity in zebrafish 	• Urine • Dust
4-Methylbenzophenone CASRN: 134-84-9 Synonym: (4-methylphenyl)phenyl- methanone	1986: No data 1990: No data 1994: 10 - 500K 1998: 10 - 500K 2002: 10 - 500K 2006: No data 2012: Withheld	MW: Log Kow: Water sol: BCF: Half-lives (hor Air Water Soil Sediment	196.25 3.69 (est) 32 mg/L 33.07 L/kg urs) 39.2 900 1,800 8,100	 Cytotoxic in human neuroblastoma cells at environmentally relevant doses ToxCast: endocrine activity; immune- and inflammation- related effects 	None located

⁴ MW = molecular weight; Log K_{ow} = log octanol-water partition coefficient; exp = experimental, est = estimated; water sol = water solubility at 25°C; BCF = bioconcentration factor in L/kg wet-wt (abbreviated L/kg).

⁵ BP-3 is already on the list of designated chemicals and is included here for comparison purposes.

⁶ Selected activity from US EPA's high-throughput chemical Toxicity Forecaster (ToxCastTM) program, available at: https://actor.epa.gov/dashboard/.

Chemical identity	US production/ import volume (lbs)	EPI Suite information⁴		Some toxicity information	Selected detections
Benzophenone-1 (BP-1)	1986: >1M - 10M	MW:	214.22	Indications of estrogenic and	Urine
CASRN: 131-56-6	1990: >1M - 10M	Log Kow:	2.96 (est)	anti-androgenic activity	Dust
	1994: >1M - 10M	Water sol:	413.4 mg/L	 ToxCast: endocrine activity; 	
Synonyms:	1998: 10K - 500K	BCF:	10.9 L/kg	effects on cellular	
(2,4-dihydroxyphenyl)-	2002: 10K - 500K			metabolism	
phenylmethanone; 2,4-	2006: <500K	Half-lives (hou	ırs)		
dihydroxybenzophenone	2012: 31,680	Air	1.28		
		Water	360		
BP-1 is commercially used and		Soil	720		
is also a metabolite of BP-3.		Sediment	3,240		
Benzophenone-4 (BP-4)	1986: No data	MW:	308.31	 Indications of estrogenic, 	Urine
CASRN: 4065-45-6	1990: 10K - 500K	Log Kow:	0.37 (est)	anti-estrogenic, and anti-	 Placental tissue
	1994: 10K - 500K	Water sol:	20,290 mg/L	androgenic activity	
Synonyms:	1998: 10K - 500K	BCF:	3.162 L/kg	ToxCast: endocrine activity	
5-benzoyl-4-hydroxy-2-	2002: 10K - 500K				
methoxybenzenesulfonic acid;	2006: No data	Half-lives (hours)			
sulisobenzone	2012: Withheld	Air	3.44		
		Water	900		
		Soil	1,800		
		Sediment	8,100		
Benzophenone-12 (BP-12)	1986: >1M - 10M	MW:	326.44	ToxCast: decreased cell	 None located
CASRN: 1843-05-6	1990: >1M - 10M	Log Kow:	6.96 (est)	viability; effects on cellular	
	1994: >1M - 10M	Water sol:	0.03693 mg/L	metabolism; immune- and	
Synonyms:	1998: >1M - 10M	BCF:	200.2 L/kg	inflammation-related effects	
(2-hydroxy-4-octoxyphenyl)-	2002: >1M - 10M				
phenylmethanone;	2006: 1M - <10M	Half-lives (hours)			
octabenzone	2012: 1,979,838	Air	1.18		
		Water	360		
		Soil	720		
		Sediment	3,240		

Phenolic Benzotriazoles

Phenolic benzotriazoles are used as UV absorbers and/or stabilizers in: plastics, including for food contact materials and electronics; paints and other coatings; cosmetics; fragrances; textiles, including clothing; and pesticide formulations. Structures for six example phenolic benzotriazoles are shown below.

UV P

UV 234

UV 326

UV 327

UV 328

UV 329

Chemical identity	US production/ import volume (lbs)	EPI Suite information		Some toxicity information	Selected detections
UV P	1986: >1M - 10M	MW:	225.25	NTP studies underway ⁷	Breast milk
CASRN: 2440-22-4	1990: >1M - 10M	Log Kow:	4.31 (exp)	Indications of anti-androgenic	• Fish
C. man i man	1994: >1M - 10M	Water sol: BCF:	25.59 mg/L	activity	
Synonyms:	1998: >1M - 10M	BCF:	324.1 L/kg	Indications of aryl	
2-(benzotriazol-2-yl)-4-	2002: >500K - 1M 2006: 500K - <1M	Half lives (ha	ıro\	hydrocarbon receptor (AhR)	
methylphenol; drometrizole		Half-lives (hou	8.43	pathway activation	
	2012: 605,074	Water	900	ToxCast: endocrine activity;	
		Soil	1,800	AhR pathway activation	
		Sediment	8,100		
UV 234	1986: >1M - 10M	MW:	447.58	NTD studies and study	◆ Fish
CASRN: 70321-86-7	1990: >1M - 10M	Log Kow:	7.67 (est)	 NTP studies underway ToxCast: effects on 	
CASINI. 70321-00-7	1990: >1M - 10M	Water sol:	0.001648 mg/L	ToxCast: effects on xenobiotic metabolism	Dust
Synonym:	1998: >1M - 10M	BCF:	3,741 L/kg	xenobiotic metabolism	
2-(benzotriazol-2-yl)-4,6-	2002: >1M - 10M	DOI .	0,7 4 1 L/Ng		
bis(2-phenylpropan-2-	2006: 1M - <10M	Half-lives (hou	ırs)		
yl)phenol	2012: 1M - 10M	Air	11.8		
7.7,		Water	1,440		
		Soil	2,880		
		Sediment	13,000		
UV 326	1986: 10K - 500K	MW:	315.81	NTP studies underway	Breast milk
CASRN: 3896-11-5	1990: 10K - 500K	Log Kow:	5.55 (est)	 Indications of AhR pathway 	Aquatic organisms
	1994: >500K - 1M	Water sol:	0.6838 mg/L	activation	(fish, mussels, and
Synonyms:	1998: >500K - 1M	BCF:	1,283 L/kg	ToxCast: effects on	other)
2-tert-butyl-6-(5-	2002: >500K - 1M			xenobiotic metabolism;	• Dust
chlorobenzotriazol-2-yl)-4-	2006: 500K - <1M	Half-lives (hou	,	increased cell proliferation	
methylphenol; bumetrizole	2012: 394,026	Air	17.2	·	
		Water	1,440		
		Soil	2,880		
		Sediment	13,000		

⁷ NTP (National Toxicology Program) is currently studying phenolic benzotriazoles. Tests include short-term toxicity, toxicokinetics, and genetic toxicology. More information is available at: http://ntp.niehs.nih.gov/testing/noms/search/summary/nm-n21204.html.

Chemical identity	US production/ import volume (lbs)	EPI Suite information		Some toxicity information	Selected detections
UV 327 CASRN: 3864-99-1 Synonym: 2,4-ditert-butyl-6-(5- chlorobenzotriazol-2- yl)phenol	1986: 10K - 500K 1990: 10K - 500K 1994: 10K - 500K 1998: 10K - 500K 2002: 10K - 500K 2006: <500K 2012: Withheld	MW: Log Kow: Water sol: BCF: Half-lives (hou Air Water Soil Sediment	19.5 1,440 2,880 13,000	NTP studies underway Included on ECHA Candidate List of substances of very high concern based on vP/vB ⁸ ToxCast: not tested	Breast milk Porpoise blubber Aquatic organisms (fish, mussels, and other) Dust
UV 328 CASRN: 25973-55-1 Synonym: 2-(benzotriazol-2-yl)-4,6-bis(2-methylbutan-2-yl)phenol	1986: >1M - 10M 1990: >1M - 10M 1994: >1M - 10M 1998: >1M - 10M 2002: >1M - 10M 2006: 1M - <10M 2012: 2,246,476	MW: Log Kow: Water sol: BCF: Half-lives (hou Air Water Soil Sediment	351.50 7.25 (est) 0.01479 mg/L 6,006 L/kg urs) 16.3 1,440 2,880 13,000	 NTP studies underway Included on ECHA Candidate List of substances of very high concern based on PBT⁹ and vP/vB ToxCast: no clear indications of activity 	 Breast milk Dolphin plasma and porpoise blubber Aquatic organisms (fish, mussels and other) Dust
UV 329 CASRN: 3147-75-9 Synonyms: 2-(benzotriazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)phenol; octrizole	1986: >500K - 1M 1990: >1M - 10M 1994: 10K - 500K 1998: >1M - 10M 2002: >1M - 10M 2006: 1M - <10M 2012: 500K - 1M	MW: Log K _{ow} : Water sol: BCF: Half-lives (hou Air Water Soil Sediment	323.44 6.21 (est) 0.1678 mg/L 5,843 L/kg urs) 8.03 1,440 2,880 13,000	NTP studies underway ToxCast: increased cell cycle arrest; endocrine activity; immune- and inflammation-related effects	Breast milk Fish

 ⁸ vP/vB = very persistent and very bioaccumulative
 9 PBT = persistent, bioaccumulative, and toxic

References consulted

General

Dix D, Houck KA, Martin MT et al. 2007. The ToxCast Program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci 95:5-12.

ECHA (European Chemicals Agency). 2016. Candidate List of Substances of Very High Concern for Authorisation Available at: https://echa.europa.eu/candidate-list-table.

International Fragrance Association (IFRA). 2011. IFRA Survey: Transparency List. Available at: http://www.ifraorg.org/en-us/ingredients#.V3xKmKLyYks.

Kavlock R, Chandler K, Houck K et al. 2012. Update on EPA's ToxCast program: Providing high throughput decision support tools for chemical risk management. Chem Res Toxicol 25:1287-1302.

OEHHA (Office of Environmental Health Hazard Assessment). 2012. Green Chemistry Hazard Traits for California's Toxics Information Clearinghouse. California Code of Regulations, Title 22, Division 4.5, Chapter 54, Sections 69401-69407.2. Available at: http://oehha.ca.gov/media/downloads/risk-assessment//gcregtext011912.pdf.

US EPA (US Environmental Protection Agency). 2002. Non-Confidential Inventory Update Reporting Production Volume Information. Toxic Substances Control Act (TSCA) Inventory. Available at: http://www.epa.gov/cdr/tools/data/2002-vol.html.

US EPA. 2006. Non-Confidential 2006 Inventory Update Reporting Company/Chemical Records. TSCA Inventory.

US EPA. 2012a. Chemical Data Reporting (CDR). Available at: https://java.epa.gov/oppt_chemical_search/.

US EPA. 2012b. Estimation Program Interface Suite™ (EPI Suite). v. 4.11. Available at: https://www.epa.gov/tsca-screening-tools/download-epi-suitetm-estimation-program-interface-v411.

US EPA. 2016a. Inert Use Information. InertFinder. Pesticides. Available at: https://iaspub.epa.gov/apex/pesticides/f?p=101:1.

US EPA. 2016b. Interactive Chemical Safety for Sustainability (iCSS) ToxCast Dashboard. Available at: https://actor.epa.gov/dashboard/.

US FDA (US Food and Drug Administration). 2014a. Title 21. Code of Federal Regulations. Part 175. Indirect food additives: Adhesives and components of coatings. Available at: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=175.

US FDA. 2014b. Title 21. Code of Federal Regulations. Part 176 Indirect food additives: Paper and paperboard components. Available at: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=176.

US FDA. 2014c. Title 21. Code of Federal Regulations. Part 177. Indirect food additives: Polymers. Available at: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=177.

US FDA. 2016a. Title 21. Code of Federal Regulations. Part 172 - Food additives permitted for direct addition to food for human consumption. Subpart F - Flavoring agents and related substances. Section 172.515 Synthetic flavoring substances and adjuvants. Available at:

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?fr=172.515.

US FDA. 2016b. Title 21. Code of Federal Regulations. Part 352 - Sunscreen drug products for over-the-counter human use. Subpart B - Active ingredients Section 352.10 Sunscreen active ingredients. Available at: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=352.10&SearchTerm=sunscreen

Benzophenones

Asimakopoulous AG, Xue J, De Carvalho B et al. 2015. Urinary biomarkers of exposure to 57 xenobiotics and its association with oxidative stress in a population in Jeddah, Saudi Arabia. Environ Res 150:573-581.

Balazs A, Krifaton C, Orosz I et al. 2016. Hormonal activity, cytotoxicity and developmental toxicity of UV filters. Ecotoxicol Environ Saf 131:45-53.

Bae J, Kim S, Kannan K, Buck Louis GM. 2016. Couples' urinary concentrations of benzophenone-type ultraviolet filters and the secondary sex ratio. Sci Total Environ 543(Pt A):28-36.

Beel R, Lutke Eversloh C, Ternes TA. 2013. Biotransformation of the UV-filter sulisobenzone: Challenges for the identification of transformation products. Environ Sci Technol 47:6819-6828.

Brandt M, Becker E, Johncke U et al. 2016. A weight-of-evidence approach to assess chemicals: case study on the assessment of persistence of 4,6-substituted phenolic benzotriazoles in the environment. Environ Sci Eur 28(4):1-14.

Broniowska Z, Pomierny B, Smaga I et al. 2016. The effect of UV-filters on the viability of neuroblastoma (SH-SY5Y) cell line. Neurotoxicology 54:44-52.

Buck Louis GM, Chen Z, Kim S et al. 2015. Urinary concentrations of benzophenone-type ultraviolet light filters and semen quality. Fertil Steril 104:989-996.

Buck Louis GM, Kannan K, Sapra KJ et al. 2014. Urinary concentrations of benzophenone-type ultraviolet radiation filters and couples' fecundity. Am J Epidemiol 180:1168-1175.

Buckley JP, Herring AH, Wolff MS, Calafat AM, Engel SM. 2016. Prenatal exposure to environmental phenols and childhood fat mass in the Mount Sinai Children's Environmental Health Study. Environ Int 91:350-356.

Careghini A, Filippo Mastorgio A, Saponaro S, Sezenna S. 2015. Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments and food: A review. Environ Sci Pollut Res 22:5711–5741.

Caruana D, McPherson T, Cooper S. 2011. Allergic contact dermatitis caused by benzophenone-4 in a printer. Contact Dermatitis 64: 183-184.

Cosmetic Ingredient Review Expert Panel. 1983. Addendum to the final report on the safety assessment of benzophenones-1, -3, -4, -5, -9, and -11 to include benzophenones-2, -6, and -8. J Am Coll Toxicol 2:79-84.

de Sousa G, Teng S, Salle-Siri R et al. 2016. Prediction of the metabolic clearance of benzophenone-2, and its interaction with isoeugenol and coumarin using cryopreserved human hepatocytes in primary culture. Food Chem Toxicol 90:55-63.

EFSA (European Food Safety Authority). 2009a. EFSA statement on the presence of 4-methylbenzophenone found in breakfast cereals. Question No. EFSA-Q-2009-410. The EFSA Journal RN-243:1-19. Available at: http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2009.243r/epdf.

EFSA. 2009b. Toxicological evaluation of benzophenone. Scientific Opinion of the Panel on food contact materials, enzymes, flavourings and processing aids (CEF). Question No. EFSA-Q-2009-411. The EFSA Journal 1104:1-30. Available at: http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2009.1104/pdf.

Gao C, Liu L, Ma W et al. 2015. Benzophenone-type UV filters in urine of Chinese young adults: Concentration, source and exposure. Environ Poll 203:1-6.

Health Canada. 2016. Screening assessment report on phenol, 2-(2H-benzotriazol-2-yl)-4,6-bis(1,1-dimethylpropyl)-(BDTP) Chemical Abstracts Service Registry Number 25973-55-1. Available at: http://www.ec.gc.ca/ese-ees/78FEE504-0718-4ECE-8C6E-126F1D4EF58D/FSAR BDTP EN.pdf.

Hines EP, Mendola P, von Ehrenstrin OS et al. 2015. Concentrations of environmental phenols and parabens in milk, urine and serum of lactating North Carolina women. Reprod Toxicol 54:120-128.

Hughes TM, Stone NM. 2007. Benzophenone 4: an emerging allergen in cosmetics and toiletries? Contact Dermatitis 56:153-156.

IARC (International Agency for Research on Cancer). 2013. Some chemicals present in industrial and consumer products, food and drinking water. Volume 101. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Available at: http://monographs.iarc.fr/ENG/Monographs/vol101/mono101.pdf.

Jiménez-Díaz I, Artacho-Cordón F, Vela-Soria F et al. 2016. Urinary levels of bisphenol A, benzophenones and parabens in Tunisian women: A pilot study. Sci Total Environ 562:81-88.

Kang HS, Ko A, Kwon JE et al. 2016. Urinary benzophenone concentrations and their association with demographic factors in a South Korean population. Environ Res 149:1-7.

Kawamura Y, Ogawa Y, Nishimura T et al. 2003. Estrogenic activities of UV stabilizers used in food contact plastics and benzophenone derivatives tested by the Yeast Two-Hybrid Assay. J Health Sci 49:205-212.

Kawamura Y, Mutsuga M, Kato T et al. 2005. Estrogenic and anti-androgenic activities of benzophenones in human estrogen and androgen receptor mediated mammalian reporter gene assays. J Health Sci 51:48-54.

Kerdivel G, Le Guevel R, Habauzit D et al. 2013. Estrogenic potency of benzophenone UV filters in breast cancer cells: Proliferative and transcriptional activity substantiated by docking analysis. PLoS ONE 8(4):e60567.

Kim B, Kwon B, Jang S et al. 2016. Major benzophenone concentrations and influence of food consumption among the general population in Korea, and the association with oxidative stress biomarker. Sci Total Environ 565:649-655.

Ko A, Kang HS, Park JH et al. 2015. The association between urinary benzophenone concentrations and personal care product use in Korean adults. Arch Environ Contam Toxicol 70:640-646.

Koda T, Umezu T, Kamata R et al. 2005. Uterotrophic effects of benzophenone derivatives and a *p*-hydroxybenzoate used in ultraviolet sunscreens. Env Res 98:40-45.

Kunisue T, Chen Z, Buck Louis GM et al. 2012. Urinary concentrations of benzophenone-type UV filters in US women and their association with endometriosis. Environ Sci Technol 46:4624-4632.

Kunz PY, Fent K. 2006. Multiple hormonal activities of UV filters and comparison of *in vivo* and *in vitro* estrogenic activity of ethyl-4-aminobenzoate in fish. Aquat Toxicol 79:305-324.

León Z, Chisvert A, Balaguer Á, Salvador A. 2010. Development of a fully automated sequential injection solid-phase extraction procedure coupled to liquid chromatography to determine free 2-hydroxy-4-methoxybenzophenone and 2-hydroxy-4-methoxybenzophenone-5-sulphonic acid in human urine. Anal Chim Acta 664:178-184.

León Z, Chisvert A, Tarazona I, Salvador A. 2010. Solid-phase extraction liquid chromatography–tandem mass spectrometry analytical method for the determination of 2-hydroxy-4-methoxybenzophenone and its metabolites in both human urine and semen. Anal Bioanal Chem 398:831-843.

Ma R, Cotton B, Lichtensteiger W, Schlumpf M. 2003. UV filters with antagonistic action at androgen receptors in the MDA-kb2 cell transcriptional-activation assay. Tox Sci 74:43-50.

Miller D, Wheals BB, Beresford N, Sumpter JP. 2001. Estrogenic activity of phenolic additives determined by an *in vitro* yeast bioassay. Environ Health Perspect 109:133-138.

Molina-Molina JM, Escande A, Pillon A et al. 2008. Profiling of benzophenone derivatives using fish and human estrogen receptor specific *in vitro* bioassays. Toxicol Appl Pharmacol 232:384-395.

Moos RK, Angerer J, Wittsiepe J et al. 2014. Rapid determination of nine parabens and seven other environmental phenols in urine samples of German children and adults. Int J Hyg Environ Health 217:845-853.

Morohoshi K, Yamamoto H, Kamata R et al. 2005. Estrogenic activity of 37 components of commercial sunscreen lotions evaluated by *in vitro* assays. Toxicol in Vitro 19:457-469.

Nashev LG, Schuster D, Laggner C et al. 2010. The UV-filter benzophenone-1 inhibits 17β-hydroxysteroid dehydrogenase type 3: Virtual screening as a strategy to identify potential endocrine disrupting chemicals. Biochem Pharmacol 79:1189-1199.

NTP (National Toxicology Program). 1992. Technical report on the toxicity studies of 2-Hydroxy-4-methoxybenzophenone (CAS No. 131-57-7). NIH Publication No. 92-3344. NTP Toxicity Report Number 21.

Pollack AZ, Buck Louis GM, Chen Z et al. 2015. Bisphenol A, benzophenone-type ultraviolet filters, and phthalates in relation to uterine leiomyoma. Environ Res 137: 101-107.

Rachon D, Rimoldi G, Wuttke W. 2006. *In vitro* effects of benzophenone-2 and octyl-methoxycinnamate on the production of interferon-gamma and interleukin-10 by murine splenocytes. Immunopharmacol Immunotoxicol 28: 501-510.

Sang Z, Leung KSY. 2016. Environmental occurrence and ecological risk assessment of organic UV filters in marine organisms from Hong Kong coastal waters. Sci Total Environ 566-567:489-498.

Schlecht C, Klammer H, Jarry H, Wuttke W. 2004. Effects of estradiol, benzophenone-2 and benzophenone-3 on the expression pattern of the estrogen receptors (ER) alpha and beta, the estrogen receptor-related receptor 1 (ERR1) and the aryl hydrocarbon receptor (AhR) in adult ovariectomized rats. Toxicology 205:123-130.

Schlecht C, Klammer H, Frauendorf H et al. 2008. Pharmacokinetics and metabolism of benzophenone 2 in the rat. Toxicology 245(1-2):11-17.

Schlumpf M, Cotton B, Conscience M et al. 2001. *In vitro* and *in vivo* estrogenicity of UV screens. Environ Health Perspect 109:239-244.

Schlumpf M, Schmid P, Durrer S et al. 2004. Endocrine activity and developmental toxicity of cosmetic UV filters - an update. Toxicology 205:113-122.

Schlumpf M, Kypke K, Wittassek M et al. 2010. Exposure patterns of UV filters, fragrances, parabens, phthalates, organochlor pesticides, PBDEs and PCBs in human milk: Correlation of UV filters with use of cosmetics. Chemosphere 81:1171-1183.

Schmutzler C, Bacinski A, Gotthardt I et al. 2007. The ultraviolet filter benzophenone 2 interferes with the thyroid hormone axis in rats and is a potent *in vitro* inhibitor of human recombinant thyroid peroxidase. Endocrinology 148:2835-2844.

Schreurs R, Lanser P, Seinen W, van der Burg B. 2002. Estrogenic activity of UV filters determined by an *in vitro* reporter gene assay and an *in vivo* transgenic zebrafish assay. Arch Toxicol 76(5-6):257-61.

Schreurs RH, Sonneveld E, Jansen J et al. 2005. Interaction of polycyclic musks and UV filters with the estrogen receptor (ER), androgen receptor (AR), and progesterone receptor (PR) in reporter gene bioassays. Toxicol Sci 83:264-272.

Seidlová-Wuttke D, Jarry H, Wuttke W. 2004. Pure estrogenic effect of benzophenone-2 (BP2) but not of bisphenol A (BPA) and dibutylphtalate (DBP) in uterus, vagina and bone. Toxicology 205:103-112.

State of California. 2016. Chemicals Known to the State to Cause Cancer or Reproductive Toxicity. Title 27, California Code of Regulations, section 27001. Available at: http://oehha.ca.gov/media/downloads/crnr/p65list071516.pdf.

Suzuki T, Kitamura S, Khota R et al. 2005. Estrogenic and antiandrogenic activities of 17 benzophenone derivatives used as UV stabilizers and sunscreens. Toxicol Applied Pharmacol 203:9-17.

Valle-Sistac J, Molins-Delgado D, Díaz M et al. 2016. Determination of parabens and benzophenone-type UV filters in human placenta. First description of the existence of benzyl paraben and benzophenone-4. Env Int 88:243-249.

Vela Soria F, Ballesteros O, Zafra-Gómez A et al. 2014. A new method for the determination of benzophenone-UV filters in human serum samples by dispersive liquid–liquid microextraction with liquid chromatography–tandem mass spectrometry. Talanta 121:97-104.

Waldman JM, Gavin Q, Anderson M et al. 2016. Exposures to environmental phenols in Southern California firefighters and findings of elevated urinary benzophenone-3 levels. Environ Int 88:281-287.

Wang L, Asimakopoulous AG, Moon HB et al. 2013. Benzotriazole, benzothiazole, and benzophenone compounds in indoor dust from the United States and East Asian Countries. Environ Sci Technol 47: 4752-4759.

Wang L, Kannan K. 2013. Characteristic profiles of benzophenone-3 and its derivatives in urine of children and adults from the United States and China. Environ Sci Technol 47:12532–12538.

Wang L, Asimakopoulos AG, Kannan K. 2015. Accumulation of 19 environmental phenolic and xenobiotic heterocyclic aromatic compounds in human adipose tissue. Environ Int 78:45–50.

Watanabe Y, Kojima H, Takeuchi S et al. 2015. Metabolism of UV-filter benzophenone-3 by rat and human liver microsomes and its effect on endocrine-disrupting activity. Toxicol Appl Pharmacol 282:119-128.

Yamasaki K, Takeyoshi M, Sawaki M et al. 2003. Immature rat uterotrophic assay of 18 chemicals and Hershberger assay of 30 chemicals. Toxicology 183:93-115.

Zhang J, Kamstra J, Ghorbanzadeh M et al. 2015. *In silico* approach to identify potential thyroid hormone disruptors among currently known dust contaminants and their metabolites. Environ Sci Technol 49:10099-10107.

Zucchi S, Bluthgen N, Ieronino A, Fent K. 2011. The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males. Toxicol Appl Pharmacol 250:137-146.

Phenolic benzotriazoles

Avagyan R, Sadiktsis I, Thorsen G et al. 2013. Determination of benzothiazole and benzotriazole derivates in tire and clothing textile samples by high performance liquid chromatography–electrospray ionization tandem mass spectrometry. J Chromatogr A 1307:119-125.

Avagyan R, Luongo G, Thorsen G, Ostman C. 2015. Benzothiazole, benzotriazole, and their derivates in clothing textiles - a potential source of environmental pollutants and human exposure. Environ Sci Pollut Res 22:5842-5849.

Ballesteros-Gómez A, Jonkers T, Covaci A, de Boer J. 2016. Screening of additives in plastics with high resolution time-of-flight mass spectrometry and different ionization sources: direct probe injection (DIP)-APCI, LC-APCI, and LC-ion booster ESI. Anal Bioanal Chem 408:2945-2953.

BASF. 2005. Uvinul[®] light stabilizers. Technical information. Available at: http://www2.basf.us/additives/pdfs/uvinul_grades_4605e.pdf.

Brandt M, Becker E, Johncke U et al. 2016. A weight-of-evidence approach to assess chemicals: case study on the assessment of persistence of 4,6-substituted phenolic benzotriazoles in the environment. Environ Sci Eur 28:1-14.

Bradley E, Stratton J, Leak J et al. 2013. Printing ink compounds in foods: UK survey results. Food Addit Contam Part B Surveill 6:73-83.

Chang L, Pengyu B, Liu Y et al. 2013. Simultaneous analysis of trace polymer additives in plastic beverage packaging by solvent sublation followed by high-performance liquid chromatography. J Agric Food Chem 61:7165-7171.

Cosmetic Ingredient Review Expert Panel. 2008. Amended final report of the safety assessment of drometrizole as used in cosmetics. Int J Toxicol 27(Suppl 1):63-75.

Ema M, Fukunishi K, Matsumoto M et al. 2006. Evaluation of developmental toxicity of ultraviolet absorber 2-(3',5'-ditert-butyl-2'-hydroxyphenyl)-5-chlorobenzotriazole in rats. Drug Chem Toxicol 29:215-225.

Ema M, Fukunishi K, Hirose A et al. 2008. Repeated-dose and reproductive toxicity of the ultraviolet absorber 2-(3',5'-ditert-butyl-2'-hydroxyphenyl)-5-chlorobenzotriazole in rats. Drug Chem Toxicol 31:399-412.

Fent K, Chew G, Li J et al. 2014. Benzotriazole UV-stabilizers and benzotriazole: Antiandrogenic activity *in vitro* and activation of aryl hydrocarbon receptor pathway in zebrafish eleuthero-embryos. Sci Total Environ 482-483:125-136.

Ikarashi Y, Tsuchiya T, Nakamura A. 1994. Contact sensitivity to Tinuvin P in mice. Contact Dermatitis 30:226-230.

IVL Swedish Environmental Research Institute Ltd. 2009. Screening of benzothiazoles, benzenediamines, dicyclohexylamine and benzotriazoles. Project sponsor: Swedish Environmental Protection Agency. IVL report B2023.

Kim JW, Isobe T, Malarvannan G et al. 2012. Contamination of benzotriazole ultraviolet stabilizers in house dust from the Philippines: Implications on human exposure. Sci Total Environ 424:174-181.

Kim JW, Isobe T, Ramaswamy BR et al. 2011. Contamination and bioaccumulation of benzotriazole ultraviolet stabilizers in fish from Manila Bay, the Philippines using an ultra-fast liquid chromatography–tandem mass spectrometry. Chemosphere 85:751-758.

Lee S, Kim S, Park J et al. 2015. Synthetic musk compounds and benzotriazole ultraviolet stabilizers in breast milk: Occurrence, time-course variation and infant health risk. Environ Res 140:466-473.

Lu Z, Peart T, Cook C, De Silva A. 2016. Simultaneous determination of substituted diphenylamine antioxidants and benzotriazole ultraviolet stabilizers in blood plasma and fish homogenates by ultra high performance liquid chromatography–electrospray tandem mass spectrometry. J Chromatogr A 1461:51-58.

Luongo G, Avagyan R, Hongyu R, Ostman C. 2016. The washout effect during laundry on benzothiazole, benzotriazole, quinoline, and their derivatives in clothing textiles. Environ Sci Pollut Res 23:2537-2548.

Miller D, Wheals B, Beresford N, Sumpter J. 2001. Estrogenic activity of phenolic additives determined by an *in vitro* yeast bioassay. Environ Health Perspect 109:133-138.

Morohoshi K, Yamamoto H, Kamata R et al. 2005. Estrogenic activity of 37 components of commercial sunscreen lotions evaluated by *in vitro* assays. Toxicol In Vitro 19:457-469.

Nakata H, Murata S, Filatreau J. 2009. Occurrence and concentrations of benzotriazoles UV stabilizers in marine organisms and sediments from the Ariake Sea, Japan. Env Sci Technol 43:6920-6926.

Nakata H, Shinohara R, Murata S, Watanabe M. 2010. Detection of benzotriazole UV stabilizers in the blubber of marine mammals by gas chromatography-high resolution mass spectrometry (GC-HRMS). J Environ Monitor 12:2088-2092.

Nakata H, Shinohara R, Nakazawa Y et al. 2012. Asia-Pacific mussel watch for emerging pollutants: Distribution of synthetic musks and benzotriazole UV stabilizers in Asian and US coastal waters. Mar Pollut Bull 64:2211-2218.

Nagayoshi H, Kakimoto K, Takagi S et al. 2015. Benzotriazole ultraviolet stabilizers show potent activities as human aryl hydrocarbon receptor ligands. Env Sci Technol 49: 578-587.

NTP. 2011. Chemical Information Review Document for Phenolic Benzotriazoles. Available at: https://ntp.niehs.nih.gov/ntp/noms/support_docs/phenolicbenzotriazoles_cird_oct2011_508.pdf.

NTP. 2016. Nomination Summary for Octrizole and Related Phenolic Benzotriazoles (N21204). Available at: http://ntp.niehs.nih.gov/testing/noms/search/summary/nm-n21204.html.

OEHHA. 2010. Human Health Risk Assessment of Isomate®-EGVM. Available at: http://oehha.ca.gov/media/downloads/pesticides/report/hhraisomate-egym2010_0.pdf

US EPA. 2009. Hazard Characterization Document: Screening-level hazard characterization- sponsored chemicals: Phenolic benzotriazoles category. Available at: https://pharosproject.net/uploads/files/cml/1372166891.pdf.

US EPA. 2010. TSCA New Chemicals Program (NCP) Chemical Categories. Available at: https://www.epa.gov/sites/production/files/2014-10/documents/ncp_chemical_categories_august_2010_version_0.pdf.

Wick A, Jacobs B, Kunkel U et al. 2016. Benzotriazole UV stabilizers in sediments, suspended particulate matter and fish of German rivers: New insights into occurrence, time trends and persistency. Environ Poll 212:401-412.

Zhuang S, Wang H, Ding K et al. 2016a. Interactions of benzotriazole UV stabilizers with human serum albumin: Atomic insights revealed by biosensors, spectroscopies and molecular dynamics simulations. Chemosphere 144:1050-1059.

Zhuang S, Lv X, Pan L et al. 2016b. Benzotriazole UV 328 and UV-P showed distinct antiandrogenic activity upon human CYP3A4-mediated biotransformation. Environ Pollut S0269-7491(16):31629-3. doi: 10.1016/j.envpol.2016.10.011. [Epub ahead of print].