

BIOMONITORING CALIFORNIA

Program Update

Presentation to the Scientific Guidance Panel August 27, 2025 Nerissa Wu

Program Updates

- Surveillance
- Community-focused studies
- Laboratory work
 - Environmental Chemistry Lab
 - Environmental Health Lab
- Outreach and communications

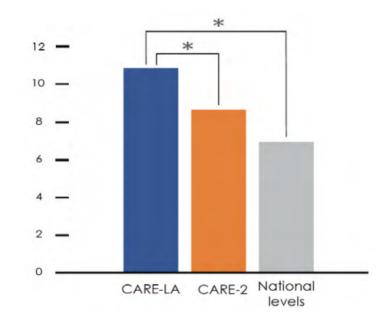
Surveillance Studies

Study	Coverage	Sample Collection	Analytes
California Regional Exposure (CARE) Study	3 regions	2018 – 2020	Perfluoroalkyl and polyfluoroalkyl substances (PFASs), metals, phenols, 1-nitropyrene
Studying Trends in Exposure in Prenatal Samples (STEPS)	3 counties	2015 – 2027	PFASs
Measuring Analytes in Maternal Archived Samples (MAMAS)	3 regions	2012, 2015-2016	PFASs, POPs
Future Surveillance	TBD	2028 onward	TBD

California Regional Exposure (CARE) Study

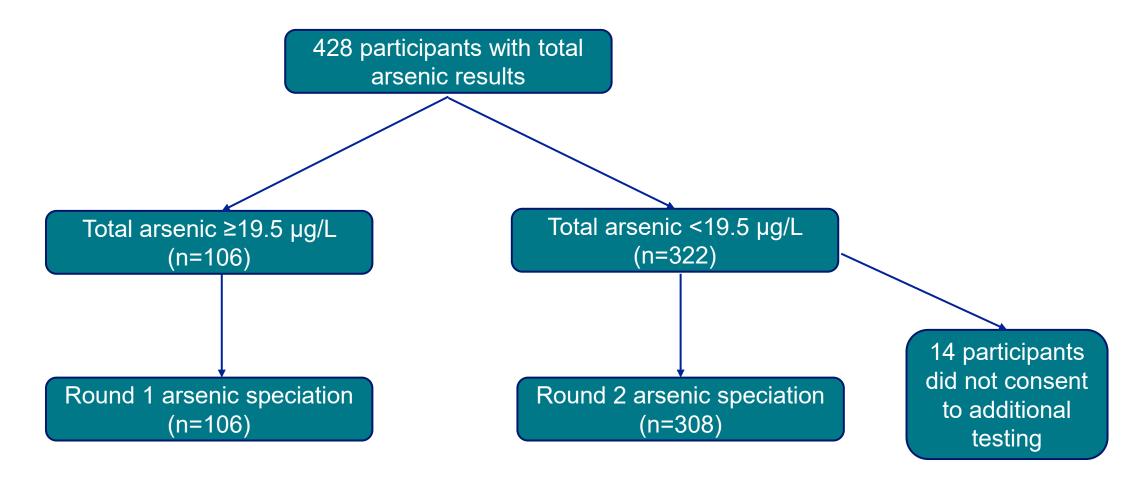
- Publications on PFAS exposures
 - Exposure to legacy per- and polyfluoroalkyl substances from diet and drinking water in California adults, 2018-2020. Environ Sci Tech 59(20). (Pennoyer, et al.)
 - Associations Between PFASs in Public Water System Drinking Water and Serum Among Southern California Adults. J. Expo Sci Environ Epidemiol. (Fillman, et al.)

California Regional Exposure (CARE) Study


- CARE-LA: Weighted population data for speciated arsenic and phenols
 - Results return completed in August 2025
 - Web posting of weighted data pending
 - Data exploration in progress

Why Speciate Arsenic?

- Organic and inorganic arsenic are generally from different exposure sources
- Inorganic arsenic is more toxic and associated with more health impacts
- Additional data will enable us to look at:
 - Impacts of inorganic arsenic exposure across the population
 - Identify sub-populations that are highly impacted
 - Evaluate exposure contributions from drinking water and other sources



Total urinary arsenic, µg/g creatinine

Indicates statistically significant comparison

CARE-LA Total Arsenic and Speciation

CARE-LA Speciated Arsenic (n=412)

Analyte	Detection frequency	Geometric mean (µg/g creatinine)	95th percentile (µg/g creatinine)
Sum of inorganic-related species	100%	6.0	22.0
Arsenous (III) acid	84%	0.4	2.3
Arsenic (V) acid	22%	*	1.1
Dimethylarsinic acid	100%	4.5	13.7
Monomethylarsonic acid	95%	0.6	1.7
Sum of organic species	83%	1.8	38.0
Arsenobetaine	82%	1.5	37.9
Arsenocholine	10%	*	0.5

Of the 414 samples analyzed for speciated arsenic, two could not be creatinine adjusted.

Data weighted to underlying population

* GM not reported for analytes with DF ≤ 65%

Comparison of CARE-LA and NHANES: Detection Frequencies

Analyte	CARE-LA Detection frequency	NHANES (2017-2018) Detection frequency
Sum of inorganic-related species	100%	74%
Arsenous (III) acid	79%	32%
Arsenic (V) acid	24%	7%
Dimethylarsinic acid	100%	69%
Monomethylarsonic acid	93%	43%
Sum of organic species	84%	48%
Arsenobetaine	84%	46%
Arsenocholine	10%	8%

Weighted data re-censored to highest MDL

^{*} GM not reported for analytes with DF ≤ 65%

Comparison of CARE-LA and NHANES: Geometric Means

	CARE-LA	NHANES (2017-2018)
Analyte	Geometric mean (µg/g creatinine)	Geometric mean (µg/g creatinine)
Sum of inorganic-related species	7.0	4.7
Arsenous (III) acid	0.4	*
Arsenic (V) acid	*	*
Dimethylarsinic acid	4.9	3.3
Monomethylarsonic acid	0.6	*
Sum of organic species	*	*
Arsenobetaine	*	*
Arsenocholine	*	*

Weighted data re-censored to highest MDL Arrows indicate statistically significant differences

^{*} GM not reported for analytes with DF ≤ 65

CARE-LA Arsenic Data: Next Steps

Current Issues

- Drinking water
 - California Water
 Boards is evaluating
 the feasibility of
 lowering the MCL
- Diet

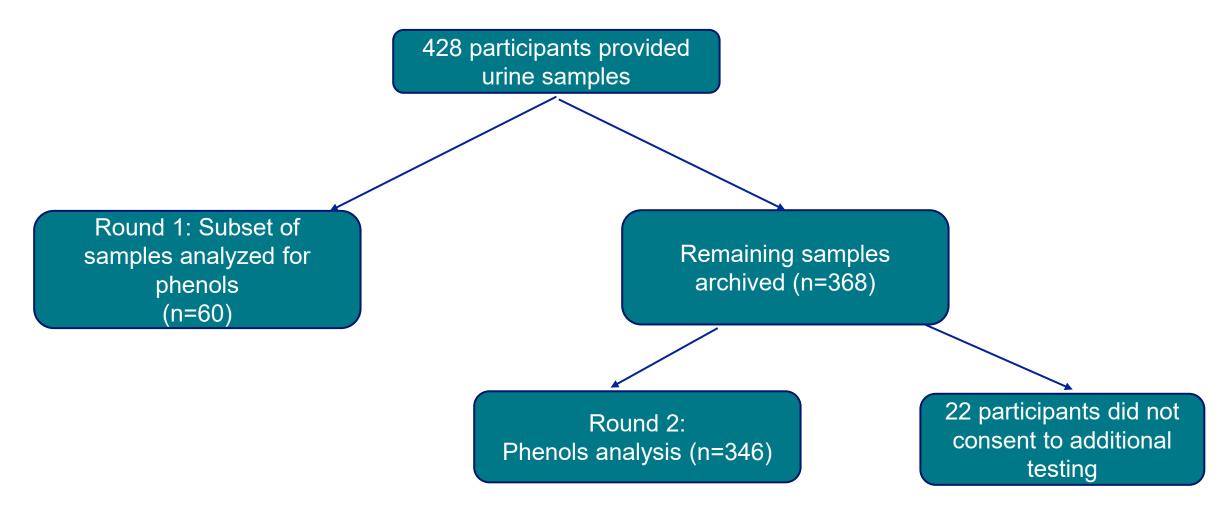
Potential partners

- California Water Boards
- OEHHA
- Community partners
- Academic partners

Potential analysis directions

- Demographic trends
- Associations with exposure sources
 - Drinking water
 - Diet

Exposure questionnaire data: demographics, diet, drinking water source, occupation, hobbies, smoking



Environmental Phenols Background

- Environmental phenols are a broad class of chemicals with a common chemical structure that are used in many different materials.
- Examples include
 - Bisphenol A (BPA) used in hard plastics, fabric adhesives, and some cash register receipts
 - Bisphenol S (BPS) and Bisphenol F (BPF) substituted for BPA in some uses
 - Parabens added as preservatives to personal care and other products
 - Benzophenone-3 (BP-3) UV stabilizer and the active ingredient in many sunscreens
- Many phenols affect the endocrine system.

CARE-LA Phenois Analyses

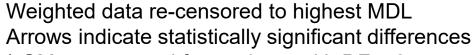
CARE-LA Environmental Phenols (n = 406)

Analyte	Detection Frequency	Geometric Mean (μg/g creatinine)	95th Percentile (µg/g creatinine)
Benzophenone-3	96%	35.3	783
Bisphenol A	78%	0.6	5.1
Bisphenol F	28%	*	5.9
Bisphenol S	76%	0.8	6.9
Ethyl paraben	35%	*	66.7
Methyl paraben	83%	18.4	389
Propyl paraben	66%	3.5	158
Triclocarban	16%	*	0.3
Triclosan	38%	*	528

Data weighted to underlying population

^{*} GM not reported for analytes with DF ≤ 65%

Comparison of CARE-LA and NHANES: Detection Frequencies


Analyte	CARE-LA (2018)	NHANES (2015-2016)
	Detection Frequency	Detection Frequency
Benzophenone-3	96%	93%
Bisphenol A	70%	94%
Bisphenol F	28%	46%
Bisphenol S	76%	81%
Ethyl paraben	28%	49%
Methyl paraben	82%	98%
Propyl paraben	66%	97%
Triclocarban	16%	32%
Triclosan	38%	66%

Weighted data re-censored to highest MDL

Comparison of CARE-LA and NHANES: Geometric Means

	CARE-LA (2018)	NHANES (2015-2016)
Analyte	Geometric Mean (µg/g creatinine)	Geometric Mean (µg/g creatinine)
Benzophenone-3	35.3	21.2
Bisphenol A	0.67	1.1
Bisphenol F	*	*
Bisphenol S	0.8	0.5
Ethyl paraben	*	*
Methyl paraben	20.6	36.2
Propyl paraben	3.5	4.9
Triclocarban	*	*
Triclosan	*	6.2

CARE-LA Phenois Data: Next Steps

Current Issues

- Consumer products and personal care products
 - Propyl and butyl paraben in skin applied/leave-in products
- SB-1226 bans bisphenols in juvenile products (January 2026)

Potential Partners

- Other California programs
 - Safer Consumer Products Program
 - California Safe
 Cosmetics Program
 - OEHHA
- Academic and other research partners

Potential analysis directions

- Demographic trends
- Associations with exposure sources

Exposure questionnaire data: demographics, diet, occupation, hobbies

Studying Trends in Exposures in Prenatal Samples (STEPS)

Sample Collection Location/Years	# Samples Acquired	Status
Orange County (2015-2021)	521	All samples analyzed for PFASs ECL conducting QA
Fresno County (2015-2021)	523	298 samples analyzed for PFASs
Los Angeles County (2024)	1856	Sample selection and analysis not yet initiated

Measuring Analytes in Maternal Archived Samples (MAMAS)

 Trends of perfluoroalkyl and polyfluoroalkyl substances (PFASs) and persistent organic pollutants (POPs) in pregnant Californians (Dobraca et al.)

Persistent organic pollutant (POP) levels in Californians:
 Shouldn't hexachlorobenzene be decreasing? (Tang et al.)

Future Surveillance Planning

- Developing study protocol
 - Primary goal: to develop a methodology that can be implemented consistently into the future
 - Considering what analytes are most important to include
 - Considering potential study regions
 - Working on making field work more efficient through the evaluation of micro-samplers

Community-Focused Studies

- Asian/Pacific Islander Community Exposures (ACE) Project
- Stockton Air Pollution Exposure Project (SAPEP)
- Biomonitoring component of the San Joaquin Valley Pollution and Health Environmental Research Study (BiomSPHERE)
- Farmworker women & Respiratory Exposure to Smoke from Swamp Cooler Air (FRESSCA–Mujeres)

Results Communications for Community-Focused Studies

- Results returned for polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs)
- Evaluation of results return materials ongoing

- Results returned for PAHs, VOCs, and metals
- Community meeting held on July 29th

Findings from Community-Focused Studies

 Associations between seafood consumption and serum PFAS levels among Asian/Pacific Islanders in the San Francisco Bay Area, California (ACE Project) – in review

 Levels of urinary PAH and VOC biomarkers among California schoolchildren living in an area heavily impacted by air pollution (SAPEP) - submitted for publication

Environmental Chemistry Laboratory

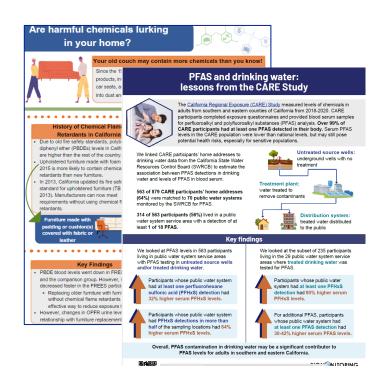
STEPS Samples

- PFAS analyses for 819 samples completed
 - Orange County: 521 samples analyzed
 - Fresno County: 298 samples analyzed

Continued Method Development

- Preparing for demonstration of new methods using Intraprogram Pilot (IPP) serum samples
 - Cyclosiloxanes
 - PAHs

Environmental Health Laboratory (EHLB)


California Regional Exposure (CARE) Study

- CARE-LA: Environmental phenols results reported (n=346)
- CARE-2: Arsenic speciation analyses almost complete (n=299)
- CARE-2: Phenols analyses to start (n=194)

Exploration of New Biomarkers

- Using non-targeted screening to improve targeted methods and potentially identify additional chemicals of concern
 - Identifying new biomarkers of PAH exposure, including carboxylated PAH metabolites
 - Using AI to support staff efforts to identify new potential biomarkers in both biomonitoring and product samples

Outreach and Communications

Fact Sheets

Social Media

Videos

Staff Update

Dinesh Adhikari

Kathleen Attfield

Hyoung Gee Baek

Paramjit Behniwal

Emily Beglarian*

Rebecca Belloso

Kelly Chen

Key-Young Choe

Josephine DeGuzman

Jagdish Dhaliwal*

Dina Dobraca

Julian Edwards

Toki Fillman

Songmei Gao

Qi Gavin

Ranjit Gill

Raymond Hughley*

Susan Hurley

Stephanie Jarmul

Duyen Kauffman

Amber Kramer*

Kiera Melton

Meltem Musa

Bishnu Neupane

June-Soo Park

Eimi Percival

Aalekhya Reddam

Martha Sandy

Roshni Sarala

Maya Shattuck

Jianwen She

Kaitlin Stitt*

Wenlu Song

Justin Sturgess

Dan Sultana

Sayaka Takaku-Pugh

Ian Tang

Darcy Tarrant

McKenna Thompson

Jeff Wagner

Miaomiao Wang

Shizhong Wang

Yunzhu (Judy) Wang

Nerissa Wu

Ruihong Xiao

Mylanah Yolangco[^]

^ New staff

* Departed staff

Questions?