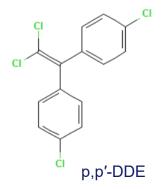
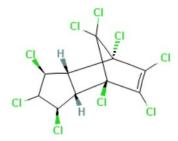


Persistent organic pollutant (POP) levels in Californians: Shouldn't hexachlorobenzene be decreasing?

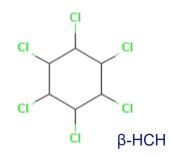
Ian Tang

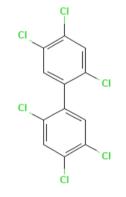
Biomonitoring California

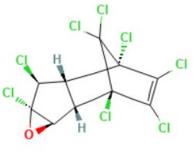

Environmental Health Investigations Branch


California Department of Public Health

Scientific Guidance Panel, November 14, 2025

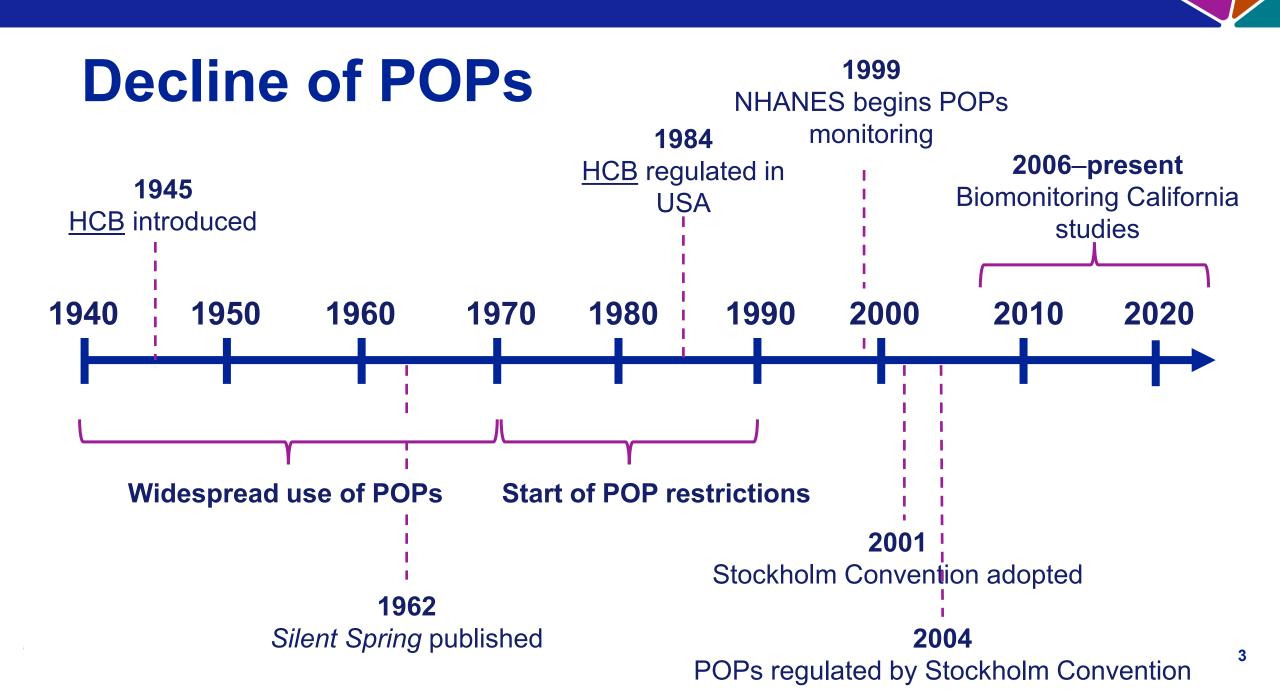




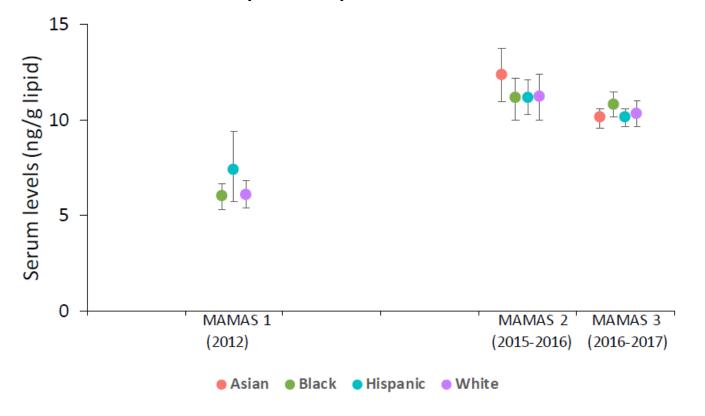

trans-Nonachlor

PCB-153

oxychlordane


Persistent Organic Pollutants (POP)

- Persistent, bioaccumulative, and toxic
- Organochlorine pesticides:
 - β-HCH: β-hexachlorocyclohexane
 - DDT: dichlorodiphenyltrichloroethane
 - DDE: dichlorodiphenyldichloroethylene
 - HCB: hexachlorobenzene
 - trans-Nonachlor
 - Oxychlordane
- Polychlorinated biphenyls

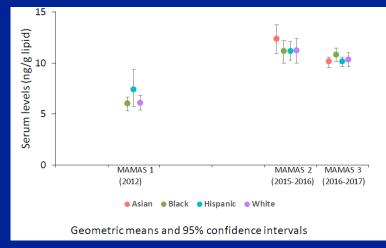


An HCB signal

Geometric mean (95% CI) of HCB in MAMAS 1-3

Measuring Analytes in Maternal Archived Samples (MAMAS)

Chemical exposures in pregnant Californians using prenatal screening


Hexachlorobenzene (HCB)

- Half-life: 6-11 years depending on media
- Used as a fungicide, can be a byproduct of other chlorinated solvents

Objective: Investigate time trends of POPs in Californians

Across Biomonitoring California (CA) Studies

Geometric mean (95% CI) of HCB in MAMAS 1-3

Biomonitoring Studies:

 Test for POPs in women of reproductive age (15-45) in combined California studies

• Total N: 649

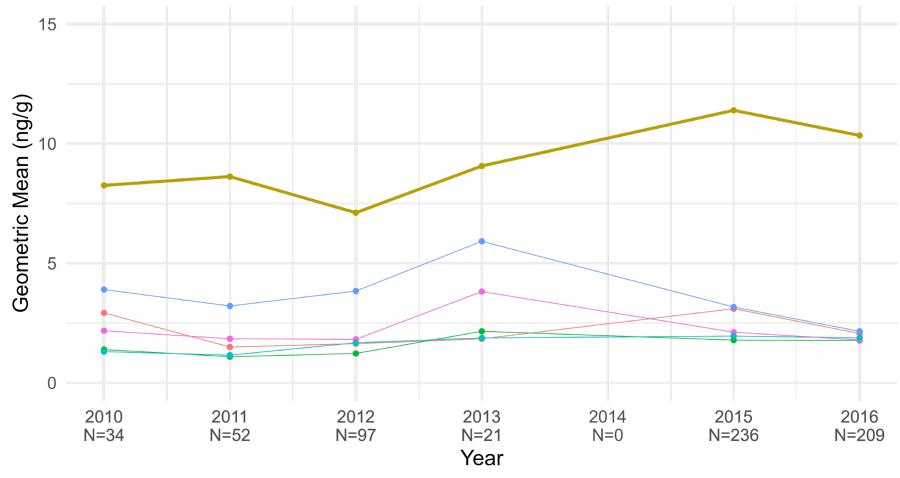
• 33% Hispanic

• Mean age: 30 years

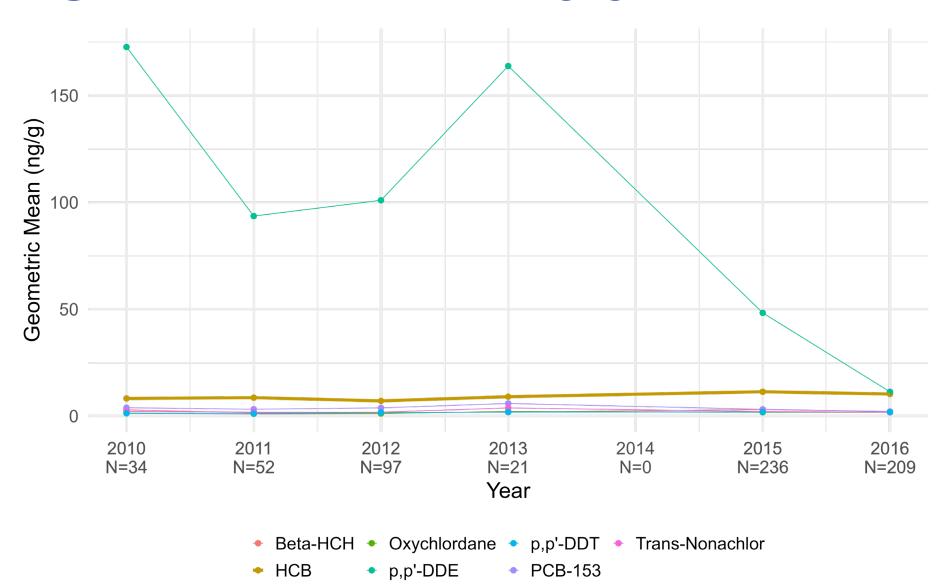
Time frame	Study Name	Region	Population	Subsample
2010-2011	(MIEEP) Maternal and Infant Environmental Exposure Project	Bay Area	Mothers	77
2010-2011	(FOX) Firefighter Occupation Exposures	Southern CA	Firefighters	2
2011-2012	(BEST 1) Pilot Biomonitoring Exposures Study	Central Valley	Kaiser members	13
2012	(MAMAS 1) Measuring Analytes in Maternal Archived Samples	Southern CA	Prenatal screening participants	58
2013	(BEST 2) Expanded Biomonitoring Exposures Study	Central Valley	Kaiser members	114
2015-2016	(MAMAS 2) Measuring Analytes in Maternal Archived Samples	Select regions	Prenatal screening participants	242
2016-2017	(MAMAS 3) Measuring Analytes in Maternal Archived Samples	Select regions	Prenatal screening participants	204

Time-trend

Serum Chemicals


- β-HCH
- p,p'-DDT
- p,p'-DDE
- HCB
- trans-Nonachlor
- Oxychlordane
- PCB 153

Analysis: Individual-level


- N= 649
- Linear regression
 - Outcome: Log-transformed analyte concentration
 - Predictor: Year of sample collection
 - Covariates: Age, race/ethnicity
- Lipid-normalized
- Level of detection standardized to highest among studies
- Back-transformed to % change
- Spearman Correlation

POP geometric mean by year, excluding p,p'-DDE

POP geometric mean by year

Percent change of POP concentration per year

POP	GM (ng/g lipid)	Adjusted % change (95% CI)	Spearman Rho	Direction of estimate
Beta-HCH	2.78	-4.89 (-7.42, -2.30)	-0.11*	
p,p'-DDT	2.30	-6.34 (-8.91, -3.69)	-0.05*	\downarrow
p,p'-DDE	39.9	-33.38 (-36.26, -30.38)	-0.68*	\
нсв	10.5	0.68 (-0.55, 1.94)	0.001	
trans-Nonachlor	2.29	-6.90 (-8.46, -5.32)	-0.05*	\
Oxychlordane	2.06	-3.46 (-4.58, -2.32)	-0.14*	\
PCB 153	3.11	-12.45 (-14.26, -10.61)	-0.35*	\

^{* =} p < 0.05

POPs in Biomonitoring participants

- Limitations in this study
 - Different populations & geographic locations
 - Unable to differentiate study effect by year
 - Low N in some years

- Sensitivity analyses are consistent
 - Combined gender
 - All women
 - Excluding highest LOD
 - Meta-regression
- Future directions
 - Include one more study
 - Adjust for more confounders

HCB at ~ 7-10 ng/g lipid?

- Pooled NHANES 11-12 to 15-16
- Hispanic Females

Age	Survey Year	Weighted Arithmetic Mean (ng/g)
	11-12	6.08
12-19	13-14	7.12
	15-16	5.58
	11-12	6.56
20-39	13-14	7.86
	15-16	6.85
	11-12	12.4
40-59	13-14	12.2
	15-16	9.99

2005-2006 to 2015-2016

- N=12,421
- NHANES cycles (Li et al., 2022 - IJERPH)
- LSGM range <u>8.9-9.6 ng/g</u>
- -1.6% change of HCB over time

2012-2015

- N=209
- Flemish Environmental Health Study Adjusted (Schoeters et al., 2016 – IJHEH)
- GM: 13.7 ng/g in adults

2014-2017

- N=54
- Pregnant African Americans, Atlanta, USA (Ortlund et al., 2025 - Environmental Research)
- GM= <u>11.7 ng/g</u>

2018-2021

- N=243
- Matched Controls to **National USA** ALS cases (Talbott et al., 2024 – ALSFTD)
- Median= 7.8 ng/g

Diet

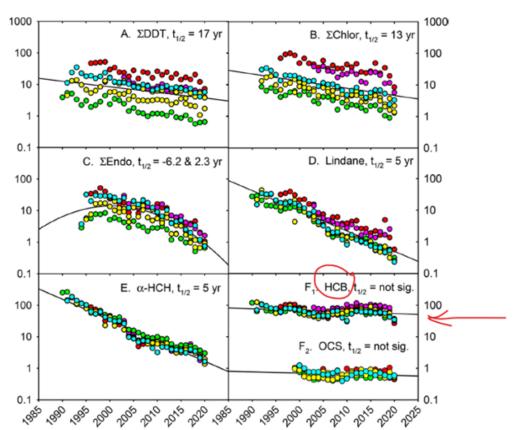
Seafood, meat, chicken, milk, cheese, butter, eggs, vegetables, rice

Re-emissions

Possible human exposures

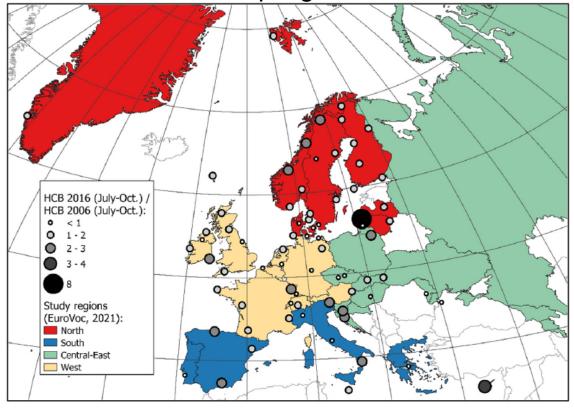
Industrial sources

 No known hazardous waste incinerators nor industry that produces HCB in CA


Byproduct / historical

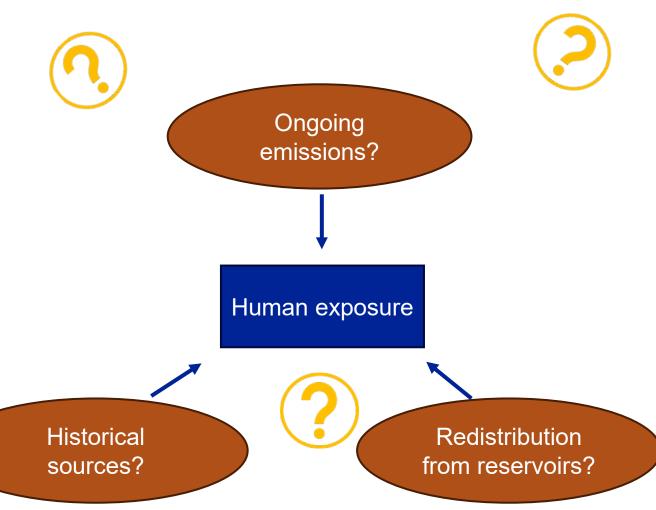
 Wood preservative, rubber, aluminum, magnesium, and dye

Constant in environment?


Annual geometric mean (pg/m³) at 6 <u>air</u> monitoring sites on North American Great Lakes

Hites & Venier 2023; ES&T

Ratio of HCB (pg/m³) in 2016 and 2006 at European passive air monitors (n=73)


68% of sampling sites had a ratio >1.2

14

Continual HCB exposure?

- HCB concentrations in humans plateauing?
- A cause for concern given toxicity
- Cautionary tale
- Need for continual surveillance of POPs
- Need for investigation on possible sources

Acknowledgements

Biomonitoring California

Dina Dobraca, Kathleen Attfield, Nerissa Wu

Office of Environmental Health Hazard Assessment (OEHHA)

Aalekhya Reddam, Meltem Musa, Martha Sandy, Stephanie Jarmul

Department of Toxic Substances Control (DTSC)

June-Soo Park, Sabrina Smith, Yunzhu Wang

Funding sources:

- CDC 5U38EH000481
- CDC 1U88EH001148

We thank all study participants and collaborators over the years

